Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Neurosci ; 17: 1280453, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38046657

RESUMO

Purpose: To test the hypothesis that rod photoreceptor mitochondria function in vivo progressively declines over time. Methods: 2, 12, and 24 month-old dark- and light-adapted C57BL/6J (B6J) mice were examined by OCT. We measured (i) an index of mitochondrial configuration within photoreceptors measured from the profile shape aspect ratio (MCP/AR) of the hyperreflective band posterior to the external limiting membrane (ELM), (ii) a proxy for energy-dependent pH-triggered water removal, the thickness of the ELM-retinal pigment epithelium (ELM-RPE), and its correlate (iii) the hyporeflective band (HB) signal intensity at the photoreceptor tips. Visual performance was assessed by optokinetic tracking. Results: In 2 and 24 month-old mice, MCP/AR in both inferior and superior retina was smaller in light than in dark; no dark-light differences were noted in 12 month-old mice. Dark-adapted inferior and superior, and light-adapted superior, ELM-RPE thickness increased with age. The dark-light difference in ELM-RPE thickness remained constant across all ages. All ages showed a decreased HB signal intensity magnitude in dark relative to light. In 12 month-old mice, the dark-light difference in HB magnitude was greater than in younger and older mice. Anatomically, outer nuclear layer thickness decreased with age. Visual performance indices were reduced at 24 month-old compared to 2 month-old mice. Conclusion: While the working hypothesis was not supported herein, the results raise the possibility of a mid-life adaptation in rod mitochondrial function during healthy aging in B6J mice based on OCT biomarkers, a plasticity that occurred prior to declines in visual performance.

2.
Invest Ophthalmol Vis Sci ; 63(8): 8, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35816042

RESUMO

Purpose: To test the hypothesis that changing energy needs alter mitochondria distribution within the rod inner segment ellipsoid. Methods: In mice with relatively smaller (C57BL/6J [B6J]) or greater (129S6/ev [S6]) retina mitochondria maximum reserve capacity, the profile shape of the rod inner segment ellipsoid zone (ISez) was measured with optical coherence tomography (OCT) under higher (dark) or lower (light) energy demand conditions. ISez profile shape was characterized using an unbiased ellipse descriptor (minor/major aspect ratio). Other bioenergy indexes evaluated include the external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness and the magnitude of the signal intensity of a hyporeflective band located between the photoreceptor tips and apical RPE. The spatial distribution of rod ellipsoid mitochondria were also examined with electron microscopy. Results: In B6J mice, darkness produced a greater ISez aspect ratio, thinner ELM-RPE, and a smaller hyporeflective band intensity than in light. In S6 mice, dark and light ISez aspect ratio values were not different and were greater than in light-adapted B6J mice; dark-adapted S6 mice showed smaller ELM-RPE thinning versus light, and negligible hyporeflective band intensity in the light. In B6J mice, mitochondria number in light increased in the distal inner segment ellipsoid and decreased proximally. In S6 mice, mitochondria number in the inner segment ellipsoid were not different between light and dark, and were greater than in B6J mice. Conclusions: These data raise the possibility that rod mitochondria activity in mice can be noninvasively evaluated based on the ISez profile shape, a new OCT index that complements OCT energy biomarkers measured outside of the ISez region.


Assuntos
Segmento Interno das Células Fotorreceptoras da Retina , Tomografia de Coerência Óptica , Animais , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica , Retina , Tomografia de Coerência Óptica/métodos
3.
Invest Ophthalmol Vis Sci ; 63(13): 22, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36576748

RESUMO

Purpose: To test the hypothesis that rod energy biomarkers in light and dark are similar in mice without functional rod transducin (Gnat1rd17). Methods: Gnat1rd17 and wildtype (WT) mice were studied in canonically low energy demand (light) and high energy demand (dark) conditions. We measured rod inner segment ellipsoid zone (ISez) profile shape, external limiting membrane-retinal pigment epithelium (ELM-RPE) thickness, and magnitude of a hyporeflective band (HB) intensity dip located between photoreceptor tips and apical RPE; antioxidants were given in a subset of mice. Oxygen consumption rate (OCR) and visual performance indexes were also measured. Results: The lower energy demand expected in light-adapted wildtype retinas was associated with an elongated ISez, thicker ELM-RPE, and higher HB magnitude, and lower OCR compared to high energy demand conditions in the dark. Gnat1rd17 mice showed a wildtype-like ISez profile shape at 20 minutes of light that became rounder at 60 minutes; at both times, ELM-RPE was smaller than wildtype values, and the HB magnitude was unmeasurable. OCR was higher than in the dark. Light-adapted Gnat1rd17 mice biomarkers were unaffected by anti-oxidants. Gnat1rd17 mice showed modest outer nuclear layer thinning and no reduction in visual performance indexes. Conclusions: Light-stimulated changes in all biomarkers in WT mice are consistent with the established light-induced decrease in net energy demand. In contrast, biomarker changes in Gnat1rd17 mice raise the possibility that light increases net energy demand in the absence of rod phototransduction.


Assuntos
Tomografia de Coerência Óptica , Transducina , Animais , Camundongos , Tomografia de Coerência Óptica/métodos , Retina/metabolismo , Células Fotorreceptoras Retinianas Bastonetes/metabolismo , Biomarcadores
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA