Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Cell Biol ; 7: 24, 2006 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-16787535

RESUMO

BACKGROUND: Integrins comprise a large family of alpha,beta heterodimeric, transmembrane cell adhesion receptors that mediate diverse essential biological functions. Higher vertebrates possess a single beta1 gene, and the beta1 subunit associates with a large number of alpha subunits to form the major class of extracellular matrix (ECM) receptors. Despite the fact that the zebrafish (Danio rerio) is a rapidly emerging model organism of choice for developmental biology and for models of human disease, little is currently known about beta1 integrin sequences and functions in this organism. RESULTS: Using RT-PCR, complete coding sequences of zebrafish beta1 paralogs were obtained from zebrafish embryos or adult tissues. The results show that zebrafish possess two beta1 paralogs (beta1-1 and beta1-2) that have a high degree of identity to other vertebrate beta1 subunits. In addition, a third, more divergent, beta1 paralog is present (beta1-3), which may have altered ligand-binding properties. Zebrafish also have other divergent beta1-like transcripts, which are C-terminally truncated forms lacking the transmembrane and cytoplasmic domains. Together with beta1-3 these truncated forms comprise a novel group of beta1 paralogs, all of which have a mutation in the ADMIDAS cation-binding site. Phylogenetic and genomic analyses indicate that the duplication that gave rise to beta1-1 and beta1-2 occurred after the divergence of the tetrapod and fish lineages, while a subsequent duplication of the ancestor of beta1-2 may have given rise to beta1-3 and an ancestral truncated paralog. A very recent tandem duplication of the truncated beta1 paralogs appears to have taken place. The different zebrafish beta1 paralogs have varied patterns of temporal expression during development. Beta1-1 and beta1-2 are ubiquitously expressed in adult tissues, whereas the other beta1 paralogs generally show more restricted patterns of expression. CONCLUSION: Zebrafish have a large set of integrin beta1 paralogs. beta1-1 and beta1-2 may share the roles of the solitary beta1 subunit found in other vertebrates, whereas beta1-3 and the truncated beta1 paralogs may have acquired novel functions.


Assuntos
Integrina beta1/genética , Família Multigênica/genética , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Sequência de Aminoácidos , Animais , Evolução Molecular , Etiquetas de Sequências Expressas , Duplicação Gênica , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Integrina beta1/química , Integrina beta1/fisiologia , Modelos Moleculares , Dados de Sequência Molecular , Especificidade de Órgãos , Filogenia , Isoformas de Proteínas/química , Isoformas de Proteínas/genética , Isoformas de Proteínas/fisiologia , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade da Espécie , Vertebrados/genética , Peixe-Zebra/embriologia , Peixe-Zebra/crescimento & desenvolvimento , Proteínas de Peixe-Zebra/química , Proteínas de Peixe-Zebra/fisiologia
2.
J Pharmacol Toxicol Methods ; 69(1): 30-8, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24140389

RESUMO

INTRODUCTION: Despite effective in vitro preclinical strategies to identify cardiovascular (CV) liabilities, there remains a need for early functional assessment prior to complex in vivo mammalian models. The larval zebrafish (Danio rerio, Zf) has been suggested for this role: previous data suggest that cardiac electrophysiology and vascular ultrastructure are comparable with mammals, and also indicate responsiveness of individual Zf CV system endpoints to some functional modulators. Little information is, however, available regarding integrated functional CV responses to drug treatment. Consequently, we developed a novel larval Zf model capable of simultaneous quantification of chronotropic, inotropic and arrhythmic effects, alongside measures of blood flow and vessel diameter. METHODS: Non-invasive video analysis of the heart and dorsal aorta of anaesthetized and agarose-embedded larval ZF was used to measure multiple cardiovascular endpoints, simultaneously, following treatment with a range of functional modulators of CV physiology. RESULTS: Changes in atrial and ventricular beat frequencies were detected in response to acute treatment with cardio-stimulants (adrenaline and theophylline), and negative chrono/inotropes (cisapride, haloperidol, terfenadine and verapamil). Arrhythmias were also observed including terfenadine-induced 2:1 atrial-ventricular (A-V) block, a previously proposed hERG surrogate measure. Significant increases in blood flow were detected in response to adrenaline and theophylline exposure; and decreases after cisapride, haloperidol, terfenadine, and verapamil treatment. Using dorsal aorta (DA) blood flow and ventricular beat rate, surrogate stoke volumes were also calculated for all compounds. DISCUSSION: These data support the use of this approach for CV function studies. Moreover the throughput and compound requirements (approximately 3 compounds/person effort/week and <10 mg) make our approach potentially suitable for higher throughput drug safety and efficacy applications, pending further assessment of ZF-mammalian pharmacological comparability.


Assuntos
Fármacos Cardiovasculares/efeitos adversos , Fármacos Cardiovasculares/farmacologia , Fenômenos Fisiológicos Cardiovasculares/efeitos dos fármacos , Sistema Cardiovascular/efeitos dos fármacos , Sistema Cardiovascular/fisiopatologia , Peixe-Zebra/fisiologia , Animais , Larva/efeitos dos fármacos , Modelos Animais , Fluxo Sanguíneo Regional/efeitos dos fármacos , Fluxo Sanguíneo Regional/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA