Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant Cell ; 23(4): 1468-79, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21498680

RESUMO

Plants must regulate their use of absorbed light energy on a minute-by-minute basis to maximize the efficiency of photosynthesis and to protect photosystem II (PSII) reaction centers from photooxidative damage. The regulation of light harvesting involves the photoprotective dissipation of excess absorbed light energy in the light-harvesting antenna complexes (LHCs) as heat. Here, we report an investigation into the structural basis of light-harvesting regulation in intact spinach (Spinacia oleracea) chloroplasts using freeze-fracture electron microscopy, combined with laser confocal microscopy employing the fluorescence recovery after photobleaching technique. The results demonstrate that formation of the photoprotective state requires a structural reorganization of the photosynthetic membrane involving dissociation of LHCII from PSII and its aggregation. The structural changes are manifested by a reduced mobility of LHC antenna chlorophyll proteins. It is demonstrated that these changes occur rapidly and reversibly within 5 min of illumination and dark relaxation, are dependent on ΔpH, and are enhanced by the deepoxidation of violaxanthin to zeaxanthin.


Assuntos
Membranas Intracelulares/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Processos Fotoquímicos , Complexo de Proteína do Fotossistema II/metabolismo , Spinacia oleracea/metabolismo , Tilacoides/metabolismo , Clorofila/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Técnica de Fratura por Congelamento , Membranas Intracelulares/ultraestrutura , Cinética , Modelos Moleculares , Proteínas de Plantas/metabolismo , Transporte Proteico , Spinacia oleracea/ultraestrutura , Termodinâmica , Tilacoides/ultraestrutura
2.
Plant J ; 69(2): 289-301, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21919982

RESUMO

We characterized a set of Arabidopsis mutants deficient in specific light-harvesting proteins, using freeze-fracture electron microscopy to probe the organization of complexes in the membrane and confocal fluorescence recovery after photobleaching to probe the dynamics of thylakoid membranes within intact chloroplasts. The same methods were used to characterize mutants lacking or over-expressing PsbS, a protein related to light-harvesting complexes that appears to play a role in regulation of photosynthetic light harvesting. We found that changes in the complement of light-harvesting complexes and PsbS have striking effects on the photosystem II macrostructure, and that these effects correlate with changes in the mobility of chlorophyll proteins within the thylakoid membrane. The mobility of chlorophyll proteins was found to correlate with the extent of photoprotective non-photochemical quenching, consistent with the idea that non-photochemical quenching involves extensive re-organization of complexes in the membrane. We suggest that a key feature of the physiological function of PsbS is to decrease the formation of ordered semi-crystalline arrays of photosystem II in the low-light state. Thus the presence of PsbS leads to an increase in the fluidity of the membrane, accelerating the re-organization of the photosystem II macrostructure that is necessary for induction of non-photochemical quenching.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/metabolismo , Arabidopsis/efeitos da radiação , Arabidopsis/ultraestrutura , Proteínas de Arabidopsis/genética , Clorofila/metabolismo , Cloroplastos/metabolismo , Fluorescência , Luz , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/genética , Mutação , Fotossíntese/fisiologia , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/genética , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Folhas de Planta/ultraestrutura , Proteínas de Plantas/metabolismo , Tilacoides/química , Tilacoides/ultraestrutura
3.
Plant J ; 62(6): 948-59, 2010 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-20230505

RESUMO

The diffusion of proteins in chloroplast thylakoid membranes is believed to be important for processes including the photosystem-II repair cycle and the regulation of light harvesting. However, to date there is very little direct information on the mobility of thylakoid proteins. We have used fluorescence recovery after photobleaching in a laser-scanning confocal microscope to visualize in real time the exchange of chlorophyll proteins between grana in intact spinach (Spinacia oleracea L.) and Arabidopsis chloroplasts. Most chlorophyll proteins in the grana appear immobile on the 10-min timescale of our measurements. However, a limited population of chlorophyll proteins (accounting for around 15% of chlorophyll fluorescence) can exchange between grana on this timescale. In intact, wild-type chloroplasts this mobile population increases significantly after photoinhibition, consistent with a role for protein diffusion in the photosystem-II repair cycle. No such increase in mobility is seen in isolated grana membranes, or in the Arabidopsis stn8 and stn7 stn8 mutants, which lack the protein kinases required for phosphorylation of photosystem II core proteins and light-harvesting complexes. Furthermore, mobility under low-light conditions is significantly lower in stn8 and stn7 stn8 plants than in wild-type Arabidopsis. The changes in protein mobility correlate with changes in the packing density and size of thylakoid protein complexes, as observed by freeze-fracture electron microscopy. We conclude that protein phosphorylation switches the membrane system to a more fluid state, thus facilitating the photosystem-II repair cycle.


Assuntos
Complexos de Proteínas Captadores de Luz/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Proteínas de Plantas/metabolismo , Spinacia oleracea/metabolismo , Tilacoides/metabolismo , Arabidopsis/metabolismo , Clorofila/metabolismo , Recuperação de Fluorescência Após Fotodegradação , Processamento de Imagem Assistida por Computador , Microscopia Confocal , Microscopia Eletrônica , Fosforilação , Transporte Proteico , Tilacoides/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA