Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nicotine Tob Res ; 24(7): 1055-1062, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35100430

RESUMO

INTRODUCTION: Electronic nicotine delivery systems (ENDS; ie, vaping devices) such as e-cigarettes, heated tobacco products, and newer coil-less ultrasonic vaping devices are promoted as less harmful alternatives to combustible cigarettes. However, their cardiovascular effects are understudied. We investigated whether exposure to aerosol from a wide range of ENDS devices, including a new ultrasonic vaping device, impairs endothelial function. AIMS AND METHODS: We measured arterial flow-mediated dilation (FMD) in rats (n = 8/group) exposed to single session of 10 cycles of pulsatile 5-second exposure over 5 minutes to aerosol from e-liquids with and without nicotine generated from a USONICIG ultrasonic vaping device, previous generation e-cigarettes, 5% nicotine JUUL pods (Virginia Tobacco, Mango, Menthol), and an IQOS heated tobacco product; with Marlboro Red cigarette smoke and clean air as controls. We evaluated nicotine absorption and serum nitric oxide levels after exposure, and effects of different nicotine acidifiers on platelet aggregation. RESULTS: Aerosol/smoke from all conditions except air significantly impaired FMD. Serum nicotine varied widely from highest in the IQOS group to lowest in USONICIG and previous generation e-cig groups. Nitric oxide levels were not affected by exposure. Exposure to JUUL and similarly acidified nicotine salt e-liquids did not affect platelet aggregation rate. Despite lack of heating coil, the USONICIG under airflow conditions heated e-liquid to ~77°C. CONCLUSIONS: A wide range of ENDS, including multiple types of e-cigarettes with and without nicotine, a heated tobacco product, and an ultrasonic vaping device devoid of heating coil, all impair FMD after a single vaping session comparably to combusted cigarettes. IMPLICATIONS: The need to understand the cardiovascular effects of various ENDS is of timely importance, as we have seen a dramatic increase in the use of these products in recent years, along with the growing assumption among its users that these devices are relatively benign. Our conclusion that a single exposure to aerosol from a wide range of ENDS impairs endothelial function comparably to cigarettes indicates that vaping can cause similar acute vascular functional impairment to smoking and is not a harmless activity.


Assuntos
Sistemas Eletrônicos de Liberação de Nicotina , Produtos do Tabaco , Vaping , Aerossóis , Animais , Eletrônica , Humanos , Nicotina , Óxido Nítrico , Ratos , Nicotiana , Dispositivos para o Abandono do Uso de Tabaco , Vaping/efeitos adversos
3.
Heart Rhythm ; 20(1): 76-86, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36603937

RESUMO

BACKGROUND: The emergence of a plethora of new tobacco products marketed as being less harmful than smoking, such as electronic cigarettes and heated tobacco products, and the increased popularity of recreational marijuana have raised concerns about the potential cardiovascular risk associated with their use. OBJECTIVE: The purpose of this study was to investigate whether the use of novel tobacco products or marijuana can cause the development of proarrhythmic substrate and eventually lead to arrhythmias. METHODS: Rats were exposed to smoke from tobacco, marijuana, or cannabinoid-depleted marijuana, to aerosol from electronic cigarettes or heated tobacco products, or to clean air once per day for 8 weeks, following by assays for blood pressure, cardiac function, ex vivo electrophysiology, and histochemistry. RESULTS: The rats exposed to tobacco or marijuana products exhibited progressively increased systolic blood pressure, decreased cardiac systolic function with chamber dilation, and reduced overall heart rate variability, relative to the clean air negative control group. Atrial fibrillation and ventricular tachycardia testing by ex vivo optical mapping revealed a significantly higher susceptibility to each, with a shortened effective refractory period and prolonged calcium transient duration. Histological analysis indicated that in all exposure conditions except for air, exposure to smoke or aerosol from tobacco or marijuana products caused severe fibrosis with decreased microvessel density and higher level of sympathetic nerve innervation. CONCLUSION: These pathophysiological results indicate that tobacco and marijuana products can induce arrhythmogenic substrates involved in cardiac electrical, structural, and neural remodeling, facilitating the development of arrhythmias.


Assuntos
Fibrilação Atrial , Cannabis , Sistemas Eletrônicos de Liberação de Nicotina , Ratos , Animais , Nicotiana , Cannabis/toxicidade , Aerossóis/efeitos adversos , Aerossóis/química
4.
ACS Appl Mater Interfaces ; 11(26): 23673-23680, 2019 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-31252490

RESUMO

Few-layer black phosphorus (BP) has attracted significant interest in recent years due to electrical and photonic properties that are far superior to those of other two-dimensional layered semiconductors. The study of long term electrical stability and reliability of black phosphorus field effect transistors (BP-FETs) with technologically relevant thin, and device-selective, gate dielectrics, stressed under realistic (closer to operation) bias and measured using state-of-the-art ultrafast reliability characterization techniques, is essential for their qualification and use in different applications. In this work, air-stable BP-FETs with a thin top-gated dielectric (15 nm Al2O3, SiO2 equivalent thickness of 5 nm) were fabricated and comprehensively characterized for threshold voltage ( Vth) instability under negative gate bias stress at various measurement delays ( tm), stress biases ( VGSTR), temperatures ( T), and stress times ( tstr) for the first time. Thin top-gated oxide enables low VGSTR that is closer to the operating condition and ultrafast Vth measurements with low delay ( tm = 10 µs, due to high drain current) that ensure minimal recovery. The resultant time kinetics of Vth degradation (Δ Vth) shows fast saturation at longer stress times and low-temperature activation energy. Vth instability in these top-gated devices is suggested to be dominated by hole trapping, which is modeled using first-order equations at different VGSTR and T. It is shown that measurements using larger tm show lower degradation magnitude that do not saturate due to recovery artifacts and give inaccurate estimation of hole trap densities. Conventional, thick, and global back-gated oxide BP-FETs were also fabricated and characterized for varying tm (1 ms being the lowest due to a low drain current level for thick oxide), VGSTR, and T to benchmark our top-gated results. Nonsaturating Δ Vth in the back-gated devices is shown to result from recovery artifacts due to the large tm (1 ms and greater) values. Finally, using a VGSTR and T-dependent first-order model, we show that the top-gated Al2O3 BP-FETs with scaled gate oxide thickness can match state-of-the-art Si reliability specifications at operating voltage and room/elevated temperature.

5.
Nanoscale ; 10(24): 11616-11623, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29896590

RESUMO

Few layer black phosphorus (BP) has recently emerged as a potential graphene analogue due to its high mobility and direct, appreciable, band gap. The fabrication and characterization of field effect transistors (FETs) involves exposure of the channel material to an electron beam (e-beam) in imaging techniques such as transmission electron microscopy (TEM) and scanning electron microscopy (SEM), and fabrication techniques like electron beam lithography (EBL). Despite this, the effect of e-beam irradiation on BP-FET performance has not been studied experimentally. In this work, we report the first experimental study on the impact of e-beam irradiation on BP-FETs. An electron beam is known to induce defects and structural changes in 2D materials like graphene, MoS2etc. resulting in the deterioration of the device quality. However, for BP-FETs, we observe an improvement in the on-current and carrier mobility (µ) along with a decrease in threshold voltage (Vth) on exposure to an e-beam with 15 keV energy for 80 seconds. These changes can be attributed to the capture of electrons by traps near the SiO2-BP interface and reduced BP surface roughness due to e-beam exposure. Hysteresis measurements and physical characterization (i.e. atomic force microscopy (AFM), X-ray photoelectron (XPS) and Raman spectroscopies) validate these mechanisms. Reduced hysteresis indicates occupation of the traps, AFM surface scans indicate reduced surface roughness and XPS data show a reduced phosphorus oxide (POx) peak immediately after exposure. Raman measurements indicate a probable structural change due to the interaction between e-beam and BP which could result in better stability.

6.
Nanoscale ; 10(7): 3320-3330, 2018 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-29384549

RESUMO

Self-organized semiconductor-semiconductor heterostructures (3R-2H) that coexist in atomically thin 2D monolayers forming homojunctions are of great importance for next-generation nanoelectronics and optoelectronics applications. Herein, we investigated the defect controlled growth of heterogeneous electronic structure within a single domain of monolayer WS2 to enable in-plane homojunctions consisting of alternate 2H semiconducting and 3R semiconducting phases of WS2. X-ray photoelectron, Raman, and photoluminescence spectroscopy along with fluorescence and Kelvin probe force microscopy imaging confirm the formation of homojunctions, enabling a direct correlation between chemical heterogeneity and electronic heterostructure in the atomically thin WS2 monolayer. Quantitative analysis of phase fractions shows 59% stable 2H phase and 41% metastable 3R phase estimated over WS2 flakes of different sizes. Time-resolved fluorescence lifetime imaging confirms distinct contrast between 2H and 3R phases with two distinct lifetimes of 3.2 ns and 1.1 ns, respectively. Kelvin probe force microscopy imaging revealed an abrupt change in the contact potential difference with a depletion width of ∼2.5 µm, capturing a difference in work function of ∼40 meV across the homojunction. Further, the thermal stability of coexisting phases and their temperature dependent optical behavior show a distinct difference among 2H and 3R phases. The investigated aspects of the controlled in plane growth of coexisting phases with seamless homojunctions, their properties, and their thermal stability will enable the development of nanoscale devices that are free from issues of lattice mismatch and grain boundaries.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA