Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Int J Mol Sci ; 20(6)2019 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-30917518

RESUMO

Telomerase has cellular functions beyond telomere stabilization, including a role in mitochondria. The function of the catalytic component-TERT-in mitochondria is still unknown, but it seems to play a role in the response to oxidative stress. Here, we interrogated the role of the subcellular localization of TERT to the response to hydrogen peroxide (H2O2) treatment. Using normal human fibroblasts (NHF) expressing non-tagged wild type (WT) human TERT (hTERT) or nuclear localization and function (nuchTERT), a mutant that we previously described as being competent in telomere elongation, while not being able to localize to mitochondria, we found the differential activation of autophagy as a function of hTERT's subcellular localization. Specifically, we found that only cells expressing the mutant had significant increases in autophagy markers as a response to H2O2 challenge. Either the reintroduction of the mitochondrial pool of hTERT or the expression of mitochondrially-targeted catalase in mutant cells blunted the autophagic response under oxidative stress. Interestingly, autophagy activation was also associated with decreased levels of mitochondrial DNA damage. Taken together, these results suggest that the loss of hTERT in mitochondria initiates a signaling cascade that allows for cells to adapt to and cope with the lack of mitochondrial telomerase. Such effects also influence the cellular response to oxidative damage.


Assuntos
Autofagia , Mitocôndrias/metabolismo , Estresse Oxidativo , Telomerase/metabolismo , Linhagem Celular , Fibroblastos/metabolismo , Humanos , Mutação , Espécies Reativas de Oxigênio/metabolismo , Telomerase/genética
2.
Am J Pathol ; 180(1): 24-31, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22056359

RESUMO

Alterations in mitochondrial oxidative phosphorylation have long been documented in tumors. Other types of mitochondrial dysfunction, including altered reactive oxygen species (ROS) production and apoptosis, also can contribute to tumorigenesis and cancer phenotypes. Furthermore, mutation and altered amounts of mitochondrial DNA (mtDNA) have been observed in cancer cells. However, how mtDNA instability per se contributes to cancer remains largely undetermined. Mitochondrial transcription factor A (TFAM) is required for expression and maintenance of mtDNA. Tfam heterozygous knock-out (Tfam(+/-)) mice show mild mtDNA depletion, but have no overt phenotypes. We show that Tfam(+/-) mouse cells and tissues not only possess less mtDNA but also increased oxidative mtDNA damage. Crossing Tfam(+/-) mice to the adenomatous polyposis coli multiple intestinal neoplasia (APC(Min/+)) mouse cancer model revealed that mtDNA instability increases tumor number and growth in the small intestine. This was not a result of enhancement of Wnt/ß-catenin signaling, but rather appears to involve a propensity for increased mitochondrial ROS production. Direct involvement of mitochondrial ROS in intestinal tumorigenesis was shown by crossing APC(Min/+) mice to those that have catalase targeted to mitochondria, which resulted in a significant reduction in tumorigenesis in the colon. Thus, mitochondrial genome instability and ROS enhance intestinal tumorigenesis and Tfam(+/-) mice are a relevant model to address the role of mtDNA instability in disease states in which mitochondrial dysfunction is implicated, such as cancer, neurodegeneration, and aging.


Assuntos
Polipose Adenomatosa do Colo/etiologia , Proteínas de Ligação a DNA/fisiologia , Genoma Mitocondrial/fisiologia , Instabilidade Genômica/fisiologia , Proteínas de Grupo de Alta Mobilidade/fisiologia , Doenças Mitocondriais/etiologia , Espécies Reativas de Oxigênio/metabolismo , Polipose Adenomatosa do Colo/metabolismo , Animais , Transformação Celular Neoplásica , Dano ao DNA/fisiologia , DNA Mitocondrial/fisiologia , Proteínas de Ligação a DNA/deficiência , Proteínas de Grupo de Alta Mobilidade/deficiência , Camundongos , Camundongos Knockout , Doenças Mitocondriais/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA