Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 115(19): 4851-4856, 2018 05 08.
Artigo em Inglês | MEDLINE | ID: mdl-29666256

RESUMO

Widespread establishment of peatlands since the Last Glacial Maximum represents the activation of a globally important carbon sink, but the drivers of peat initiation are unclear. The role of climate in peat initiation is particularly poorly understood. We used a general circulation model to simulate local changes in climate during the initiation of 1,097 peatlands around the world. We find that peat initiation in deglaciated landscapes in both hemispheres was driven primarily by warming growing seasons, likely through enhanced plant productivity, rather than by any increase in effective precipitation. In Western Siberia, which remained ice-free throughout the last glacial period, the initiation of the world's largest peatland complex was globally unique in that it was triggered by an increase in effective precipitation that inhibited soil respiration and allowed wetland plant communities to establish. Peat initiation in the tropics was only weakly related to climate change, and appears to have been driven primarily by nonclimatic mechanisms such as waterlogging due to tectonic subsidence. Our findings shed light on the genesis and Holocene climate space of one of the world's most carbon-dense ecosystem types, with implications for understanding trajectories of ecological change under changing future climates.


Assuntos
Carbono/metabolismo , Aquecimento Global , Modelos Biológicos , Solo , Áreas Alagadas
2.
Nature ; 487(7406): 219-22, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22785319

RESUMO

The last deglaciation (21 to 7 thousand years ago) was punctuated by several abrupt meltwater pulses, which sometimes caused noticeable climate change. Around 14 thousand years ago, meltwater pulse 1A (MWP-1A), the largest of these events, produced a sea level rise of 14-18 metres over 350 years. Although this enormous surge of water certainly originated from retreating ice sheets, there is no consensus on the geographical source or underlying physical mechanisms governing the rapid sea level rise. Here we present an ice-sheet modelling simulation in which the separation of the Laurentide and Cordilleran ice sheets in North America produces a meltwater pulse corresponding to MWP-1A. Another meltwater pulse is produced when the Labrador and Baffin ice domes around Hudson Bay separate, which could be associated with the '8,200-year' event, the most pronounced abrupt climate event of the past nine thousand years. For both modelled pulses, the saddle between the two ice domes becomes subject to surface melting because of a general surface lowering caused by climate warming. The melting then rapidly accelerates as the saddle between the two domes gets lower, producing nine metres of sea level rise over 500 years. This mechanism of an ice 'saddle collapse' probably explains MWP-1A and the 8,200-year event and sheds light on the consequences of these events on climate.


Assuntos
Aquecimento Global , Camada de Gelo , Simulação por Computador , América do Norte , Oceanos e Mares , Fatores de Tempo
3.
Geophys Res Lett ; 43(17): 9130-9137, 2016 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-27773954

RESUMO

Elucidating the source(s) of Meltwater Pulse 1a, the largest rapid sea level rise caused by ice melt (14-18 m in less than 340 years, 14,600 years ago), is important for understanding mechanisms of rapid ice melt and the links with abrupt climate change. Here we quantify how much and by what mechanisms the North American ice sheet could have contributed to Meltwater Pulse 1a, by driving an ice sheet model with two transient climate simulations of the last 21,000 years. Ice sheet perturbed physics ensembles were run to account for model uncertainties, constraining ice extent and volume with reconstructions of 21,000 years ago to present. We determine that the North American ice sheet produced 3-4 m global mean sea level rise in 340 years due to the abrupt Bølling warming, but this response is amplified to 5-6 m when it triggers the ice sheet saddle collapse.

4.
Nat Commun ; 9(1): 2947, 2018 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-30054472

RESUMO

Abrupt climate changes in the past have been attributed to variations in Atlantic Meridional Overturning Circulation (AMOC) strength. However, the exact timing and magnitude of past AMOC shifts remain elusive, which continues to limit our understanding of the driving mechanisms of such climate variability. Here we show a consistent signal of the 231Pa/230Th proxy that reveals a spatially coherent picture of western Atlantic circulation changes over the last deglaciation, during abrupt millennial-scale climate transitions. At the onset of deglaciation, we observe an early slowdown of circulation in the western Atlantic from around 19 to 16.5 thousand years ago (ka), consistent with the timing of accelerated Eurasian ice melting. The subsequent weakened AMOC state persists for over a millennium (~16.5-15 ka), during which time there is substantial ice rafting from the Laurentide ice sheet. This timing indicates a role for melting ice in driving a two-step AMOC slowdown, with a positive feedback sustaining continued iceberg calving and climate change during Heinrich Stadial 1.

5.
Science ; 354(6312): 626-629, 2016 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-27811276

RESUMO

Seawater 234U/238U provides global-scale information about continental weathering and is vital for marine uranium-series geochronology. Existing evidence supports an increase in 234U/238U since the last glacial period, but the timing and amplitude of its variability has been poorly constrained. Here we report two seawater 234U/238U records based on well-preserved deep-sea corals from the low-latitude Atlantic and Pacific Oceans. The Atlantic 234U/238U started to increase before major sea-level rise and overshot the modern value by 3 per mil during the early deglaciation. Deglacial 234U/238U in the Pacific converged with that in the Atlantic after the abrupt resumption of Atlantic meridional overturning. We suggest that ocean mixing and early deglacial release of excess 234U from enhanced subglacial melting of the Northern Hemisphere ice sheets have driven the observed 234U/238U evolution.

6.
Philos Trans A Math Phys Eng Sci ; 371(2001): 20130123, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24043872

RESUMO

Geological data for the Early Eocene (56-47.8 Ma) indicate extensive global warming, with very warm temperatures at both poles. However, despite numerous attempts to simulate this warmth, there are remarkable data-model differences in the prediction of these polar surface temperatures, resulting in the so-called 'equable climate problem'. In this paper, for the first time an ensemble with a perturbed climate-sensitive model parameters approach has been applied to modelling the Early Eocene climate. We performed more than 100 simulations with perturbed physics parameters, and identified two simulations that have an optimal fit with the proxy data. We have simulated the warmth of the Early Eocene at 560 ppmv CO2, which is a much lower CO2 level than many other models. We investigate the changes in atmospheric circulation, cloud properties and ocean circulation that are common to these simulations and how they differ from the remaining simulations in order to understand what mechanisms contribute to the polar warming. The parameter set from one of the optimal Early Eocene simulations also produces a favourable fit for the last glacial maximum boundary climate and outperforms the control parameter set for the present day. Although this does not 'prove' that this model is correct, it is very encouraging that there is a parameter set that creates a climate model able to simulate well very different palaeoclimates and the present-day climate. Interestingly, to achieve the great warmth of the Early Eocene this version of the model does not have a strong future climate change Charney climate sensitivity. It produces a Charney climate sensitivity of 2.7(°)C, whereas the mean value of the 18 models in the IPCC Fourth Assessment Report (AR4) is 3.26(°)C±0.69(°)C. Thus, this value is within the range and below the mean of the models included in the AR4.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA