Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-38837060

RESUMO

PURPOSE: Spatial intratumoral heterogeneity poses a significant challenge for accurate response assessment in glioblastoma. Multimodal imaging coupled with advanced image analysis has the potential to unravel this response heterogeneity. METHODS: Based on automated tumor segmentation and longitudinal registration with follow-up imaging, we categorized contrast-enhancing voxels of 61 patients with suspected recurrence of glioblastoma into either true tumor progression (TP) or pseudoprogression (PsP). To allow the unbiased analysis of semantically related image regions, adjacent voxels with similar values of cerebral blood volume (CBV), FET-PET, and contrast-enhanced T1w were automatically grouped into supervoxels. We then extracted first-order statistics as well as texture features from each supervoxel. With these features, a Random Forest classifier was trained and validated employing a 10-fold cross-validation scheme. For model evaluation, the area under the receiver operating curve, as well as classification performance metrics were calculated. RESULTS: Our image analysis pipeline enabled reliable spatial assessment of tumor response. The predictive model reached an accuracy of 80.0% and a macro-weighted AUC of 0.875, which takes class imbalance into account, in the hold-out samples from cross-validation on supervoxel level. Analysis of feature importances confirmed the significant role of FET-PET-derived features. Accordingly, TP- and PsP-labeled supervoxels differed significantly in their 10th and 90th percentile, as well as the median of tumor-to-background normalized FET-PET. However, CBV- and T1c-related features also relevantly contributed to the model's performance. CONCLUSION: Disentangling the intratumoral heterogeneity in glioblastoma holds immense promise for advancing precise local response evaluation and thereby also informing more personalized and localized treatment strategies in the future.

2.
Clin Neuropathol ; 38(4): 168-173, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31131824

RESUMO

Although Schwann cell-derived tumors show typical histological features, the broad variety of spindle cell tumors that exist can impede the diagnostic procedure. In this study, we present aldehyde dehydrogenase 1 (ALDH1) as a new, viable diagnostic marker for Schwann cell tumors. Protein expression was examined by immunohistochemistry in schwannomas, neurofibromas, and malignant peripheral nerve sheath tumors (MPNST) as well as in non-neoplastic peripheral nerve sheath specimens. Meningiomas and other spindle cell-like tumors served as control tissue. ALDH1 immunohistochemistry was performed on human FFPE samples. Staining evaluation was performed according to a defined immunoreactive score. All schwannomas and neurofibromas were strongly positive for ALDH1. MPNST were positive too, but with a clear reduction of ALDH1 expression. All non-Schwann-cell-derived tumors showed no immunoreaction. This leads to the conclusion that ALDH1 can serve a as viable diagnostic marker for schwannomas and neurofibromas as it was expressed and detected by IHC in all samples. Furthermore, ALDH1 expression seems to be a sign for differentiation as it diminishes during malignization of Schwann cell tumors. Hence, its expression level provides information about the biological behavior of the tumor.


Assuntos
Família Aldeído Desidrogenase 1/metabolismo , Biomarcadores Tumorais/análise , Neurilemoma/patologia , Células de Schwann/metabolismo , Adulto , Feminino , Humanos , Imuno-Histoquímica/métodos , Masculino , Neoplasias Meníngeas/diagnóstico , Neoplasias Meníngeas/patologia , Meningioma/diagnóstico , Meningioma/patologia , Neoplasias de Bainha Neural/diagnóstico , Neoplasias de Bainha Neural/patologia , Neurilemoma/diagnóstico , Neurofibroma/patologia
3.
Cancers (Basel) ; 16(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38672556

RESUMO

Medulloblastoma and pilocytic astrocytoma are the two most common pediatric brain tumors with overlapping imaging features. In this proof-of-concept study, we investigated using a deep learning classifier trained on a multicenter data set to differentiate these tumor types. We developed a patch-based 3D-DenseNet classifier, utilizing automated tumor segmentation. Given the heterogeneity of imaging data (and available sequences), we used all individually available preoperative imaging sequences to make the model robust to varying input. We compared the classifier to diagnostic assessments by five readers with varying experience in pediatric brain tumors. Overall, we included 195 preoperative MRIs from children with medulloblastoma (n = 69) or pilocytic astrocytoma (n = 126) across six university hospitals. In the 64-patient test set, the DenseNet classifier achieved a high AUC of 0.986, correctly predicting 62/64 (97%) diagnoses. It misclassified one case of each tumor type. Human reader accuracy ranged from 100% (expert neuroradiologist) to 80% (resident). The classifier performed significantly better than relatively inexperienced readers (p < 0.05) and was on par with pediatric neuro-oncology experts. Our proof-of-concept study demonstrates a deep learning model based on automated tumor segmentation that can reliably preoperatively differentiate between medulloblastoma and pilocytic astrocytoma, even in heterogeneous data.

4.
Cancers (Basel) ; 16(9)2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38730694

RESUMO

So far, the cellular origin of glioblastoma (GBM) needs to be determined, with prevalent theories suggesting emergence from transformed endogenous stem cells. Adult neurogenesis primarily occurs in two brain regions: the subventricular zone (SVZ) and the subgranular zone (SGZ) of the hippocampal dentate gyrus. Whether the proximity of GBM to these neurogenic niches affects patient outcome remains uncertain. Previous studies often rely on subjective assessments, limiting the reliability of those results. In this study, we assessed the impact of GBM's relationship with the cortex, SVZ and SGZ on clinical variables using fully automated segmentation methods. In 177 glioblastoma patients, we calculated optimal cutpoints of minimal distances to the SVZ and SGZ to distinguish poor from favorable survival. The impact of tumor contact with neurogenic zones on clinical parameters, such as overall survival, multifocality, MGMT promotor methylation, Ki-67 and KPS score was also examined by multivariable regression analysis, chi-square test and Mann-Whitney-U. The analysis confirmed shorter survival in tumors contacting the SVZ with an optimal cutpoint of 14 mm distance to the SVZ, separating poor from more favorable survival. In contrast, tumor contact with the SGZ did not negatively affect survival. We did not find significant correlations with multifocality or MGMT promotor methylation in tumors contacting the SVZ, as previous studies discussed. These findings suggest that the spatial relationship between GBM and neurogenic niches needs to be assessed differently. Objective measurements disprove prior assumptions, warranting further research on this topic.

5.
J Cereb Blood Flow Metab ; : 271678X241237733, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38483125

RESUMO

Arterial spin labeling (ASL) is a non-invasive magnetic resonance imaging (MRI) method for the assessment of cerebral blood flow (CBF). This review summarizes recent ASL-based investigations in adult and pediatric patients with migraine with aura, migraine without aura, and chronic migraine. A systematic search according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines was conducted within PubMed and reference sections of articles identified from April 2014 to November 2022. Out of 236 initial articles, 20 remained after filtering, encompassing data from 1155 subjects in total. Cross-sectional studies in adults showed inconsistent results, while longitudinal studies demonstrated that cerebral perfusion changes over the migraine cycle can be tracked using ASL. The most consistent findings were observed in ictal states among pediatric migraine patients, where studies showed hypoperfusion matching aura symptoms during early imaging followed by hyperperfusion. Overall, ASL is a useful but currently underutilized modality for evaluating cerebral perfusion in patients with migraine. The generalizability of results is currently limited by heterogeneities regarding study design and documentation of clinical variables (e.g., relation of attacks to scanning timepoint, migraine subtypes). Future MRI studies should consider augmenting imaging protocols with ASL to further elucidate perfusion dynamics in migraine.

6.
Neurooncol Adv ; 6(1): vdae080, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38957161

RESUMO

Background: Meningiomas are the most common primary brain tumors. While most are benign (WHO grade 1) and have a favorable prognosis, up to one-fourth are classified as higher-grade, falling into WHO grade 2 or 3 categories. Recently, an integrated risk score (IRS) pertaining to tumor biology was developed and its prognostic relevance was validated in a large, multicenter study. We hypothesized imaging data to be reflective of the IRS. Thus, we assessed the potential of a machine learning classifier for its noninvasive prediction using preoperative magnetic resonance imaging (MRI). Methods: In total, 160 WHO grade 2 and 3 meningioma patients from 2 university centers were included in this study. All patients underwent surgery with histopathological workup including methylation analysis. Preoperative MRI scans were automatically segmented, and radiomic parameters were extracted. Using a random forest classifier, 3 machine learning classifiers (1 multiclass classifier for IRS and 2 binary classifiers for low-risk and high-risk prediction, respectively) were developed in a training set (120 patients) and independently tested in a hold-out test set (40 patients). Results: Multiclass IRS classification had a test set area under the curve (AUC) of 0.7, mostly driven by the difficulties in clearly separating medium-risk from high-risk patients. Consequently, a classifier predicting low-risk IRS versus medium-/high-risk showed a very high test accuracy of 90% (AUC 0.88). In particular, "sphericity" was associated with low-risk IRS classification. Conclusion: The IRS, in particular molecular low-risk, can be predicted from imaging data with high accuracy, making this important prognostic classification accessible by imaging.

7.
Cancers (Basel) ; 15(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37190283

RESUMO

BACKGROUND: The fifth version of the World Health Organization (WHO) classification of tumors of the central nervous system (CNS) in 2021 brought substantial changes. Driven by the enhanced implementation of molecular characterization, some diagnoses were adapted while others were newly introduced. How these changes are reflected in imaging features remains scarcely investigated. MATERIALS AND METHODS: We retrospectively analyzed 226 treatment-naive primary brain tumor patients from our institution who received extensive molecular characterization by epigenome-wide methylation microarray and were diagnosed according to the 2021 WHO brain tumor classification. From multimodal preoperative 3T MRI scans, we extracted imaging metrics via a fully automated, AI-based image segmentation and processing pipeline. Subsequently, we examined differences in imaging features between the three main glioma entities (glioblastoma, astrocytoma, and oligodendroglioma) and particularly investigated new entities such as astrocytoma, WHO grade 4. RESULTS: Our results confirm prior studies that found significantly higher median CBV (p = 0.00003, ANOVA) and lower median ADC in contrast-enhancing areas of glioblastomas, compared to astrocytomas and oligodendrogliomas (p = 0.41333, ANOVA). Interestingly, molecularly defined glioblastoma, which usually does not contain contrast-enhancing areas, also shows significantly higher CBV values in the non-enhancing tumor than common glioblastoma and astrocytoma grade 4 (p = 0.01309, ANOVA). CONCLUSIONS: This work provides extensive insights into the imaging features of gliomas in light of the new 2021 WHO CNS tumor classification. Advanced imaging shows promise in visualizing tumor biology and improving the diagnosis of brain tumor patients.

8.
Cancers (Basel) ; 15(1)2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36612079

RESUMO

Both positron emission tomography (PET) and magnetic resonance imaging (MRI), including dynamic susceptibility contrast perfusion (DSC-PWI), are crucial for treatment monitoring of patients with high-grade gliomas. In clinical practice, they are usually conducted at separate time points. Whether this affects their diagnostic performance is presently unclear. To this end, we retrospectively reviewed 38 patients with pathologically confirmed glioblastoma (IDH wild-type) and suspected tumor recurrence after radiotherapy. Only patients who received both a PET−MRI (where DSC perfusion was acquired simultaneously with a FET-PET) and a separate MRI exam (including DSC perfusion) were included. Tumors were automatically segmented into contrast-enhancing tumor (CET), necrosis, and edema. To compare the simultaneous as well as the sequential DSC perfusion to the FET-PET, we calculated Dice overlap, global mutual information as well as voxel-wise Spearman correlation of hotspot areas. For the joint assessment of PET and MRI, we computed logistic regression models for the differentiation between true progression (PD) and treatment-related changes (TRC) using simultaneously or sequentially acquired images as input data. We observed no significant differences between Dice overlap (p = 0.17; paired t-test), mutual information (p = 0.18; paired t-test) and Spearman correlation (p = 0.90; paired t-test) when comparing simultaneous PET−MRI and sequential PET/MRI acquisition. This also held true for the subgroup of patients with >14 days between exams. Importantly, for the diagnostic performance, ROC analysis showed similar AUCs for differentiation of PD and TRC (AUC simultaneous PET: 0.77; AUC sequential PET: 0.78; p = 0.83, DeLong's test). We found no relevant differences between simultaneous and sequential acquisition of FET-PET and DSC perfusion, also regarding their diagnostic performance. Given the increasing attention to multi-parametric assessment of glioma treatment response, our results reassuringly suggest that sequential acquisition is clinically and scientifically acceptable.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA