Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
2.
Wellcome Open Res ; 9: 374, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39184131

RESUMO

The COVID-19 pandemic demonstrated that the current purely market-driven approaches to drug discovery and development alone are insufficient to drive equitable access to new therapies either in preparation for, or in response to, pandemics. A new global framework driven by equity is under negotiation at the World Health Organization to support pandemic preparedness and response. Some believe that the global intellectual property (IP) system itself is part of the problem and propose a purely Open Science approach. In this article, we discuss how existing IP frameworks and contractual agreements may be used to create rights and obligations to generate a more effective global response in future, drawing on experience gained in the COVID Moonshot program, a purely Open Science collaboration, and the ASAP AViDD drug discovery consortium, which uses a hybrid, phased model of Open Science, patent filing and contractual agreements. We conclude that 'straight to generic' drug discovery is appropriate in some domains, and that targeted patent protection, coupled with open licensing, can offer a route to generating affordable and equitable access for therapy areas where market forces have failed. The Extended Data contains a copy of our model IP policy, which can be used as a template by other discovery efforts seeking to ensure their drug candidates can be developed for globally equitable and affordable access.


Drug discovery and development organizations usually recoup their investment in this risky and expensive process by filing patents on drug candidates which, if granted, give them a time-limited monopoly on the manufacture, sale or licensing of the drug. This means they can negotiate its price and terms of distribution, which creates distortions in access globally. In an alternative 'Open Science' approach, R&D organizations publish all the information about a prospective drug without applying for patents, meaning that anyone can use this knowledge to make and sell the drug, while the R&D organizations have no control over how it is priced or distributed. In a pandemic, fast-spreading viruses must be rapidly contained by delivering drugs to where they are most needed. This requires innovation and global access, but this is stifled in both models ­ in the first because of patent abuses, in the second because the lack of control may jeopardize the most efficient development. The authors share a model that prioritizes globally fair and affordable pricing by creating 'maximally permissive licenses' based on 'minimally defensive patents'. They explain the practical and bioethical background to their proposals and share an example of collective management of intellectual property and licensing agreement that is being used in the AI-driven Structure-enabled Antiviral Platform (ASAP) Center's Pandemic Preparedness work.

3.
Expert Opin Ther Pat ; 31(12): 1189-1204, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34253125

RESUMO

Introduction: Up to 30% of all human cancers are driven by the overactivation of RAS signaling. Son of Sevenless 1 (SOS1) is a central node in RAS signaling pathways and modulation of SOS1-mediated RAS activation represents a unique opportunity for treating RAS-addicted cancers. Several recent publications and patent documents have demonstrated the ability of small molecules to affect the activation of RAS by SOS1 and have shown their potential for the treatment of cancers driven by RAS mutants.Areas covered: Documents focusing on both small-molecule inhibitors and activators of the SOS1:RAS interaction and their potential use as cancer therapeutics are covered. A total of 10 documents from 4 applicants are evaluated with discussion focusing on structural modifications of these compounds as well as relevant preclinical data.Expert opinion: The last decade has seen a significant increase in research and disclosures in the development of small-molecule SOS1 inhibitors. Considering the promising data that have been disclosed, interest in this area of research will likely remain strong for the foreseeable future. With the first SOS1 inhibitor currently in phase I clinical trials, the outcome of these trials will likely influence future development of SOS1 inhibitors for treatment of RAS-driven cancers.


Assuntos
Neoplasias/tratamento farmacológico , Proteína SOS1/antagonistas & inibidores , Proteínas ras/genética , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Desenvolvimento de Medicamentos , Humanos , Mutação , Neoplasias/genética , Patentes como Assunto , Proteína SOS1/metabolismo , Transdução de Sinais
4.
J Med Chem ; 61(8): 3277-3292, 2018 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-28956609

RESUMO

The first large scale analysis of in vitro absorption, distribution, metabolism, excretion, and toxicity (ADMET) data shared across multiple major pharma has been performed. Using advanced matched molecular pair analysis (MMPA), we combined data from three pharmaceutical companies and generated ADMET rules, avoiding the need to disclose the full chemical structures. On top of the very large exchange of knowledge, all companies involved synergistically gained approximately 20% more rules from the shared transformations. There is good quantitative agreement between the rules based on shared data compared to both individual companies' rules and rules published in the literature. Known correlations between log  D, solubility, in vitro clearance, and plasma protein binding also hold in transformation space, but there are also interesting exceptions. Data pools such as this allow focusing on particular functional groups and characterizing their ADMET profile. Finally the role of a corpus of robustly tested medicinal chemistry knowledge in the training of medicinal chemistry is discussed.


Assuntos
Química Farmacêutica/estatística & dados numéricos , Indústria Farmacêutica/estatística & dados numéricos , Farmacologia/métodos , Animais , Mineração de Dados , Conjuntos de Dados como Assunto , Cães , Humanos , Macaca fascicularis , Células Madin Darby de Rim Canino , Taxa de Depuração Metabólica , Camundongos , Farmacologia/estatística & dados numéricos , Ligação Proteica , Ratos , Solubilidade
5.
Chem Commun (Camb) ; (47): 4909-11, 2006 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-17136243

RESUMO

The synthesis of an achiral skipped bis(1,3-diene) substrate was achieved, which was shown to undergo an enantioselective, diastereotopic group-selective, intramolecular Diels-Alder reaction.


Assuntos
Butadienos/síntese química , Indenos/química , Butadienos/química , Espectroscopia de Ressonância Magnética/métodos , Modelos Moleculares , Estrutura Molecular , Sensibilidade e Especificidade , Estereoisomerismo
6.
Mol Biosyst ; 2(9): 430-46, 2006 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17153140

RESUMO

There are clearly many different philosophies associated with adapting fragment screening into mainstream Drug Discovery Lead Generation strategies. Scientists at Astex, for instance, focus entirely on strategies involving use of X-ray crystallography and NMR. However, AstraZeneca uses a number of different fragment screening strategies. One approach is to screen a 2000 compound fragment set (with close to "lead-like" complexity) at 100 microM in parallel with every HTS such that the data are obtained on the entire screening collection at 10 microM plus the extra samples at 100 microM; this provides valuable compound potency data in a concentration range that is usually unexplored. The fragments are then screen-specific "privileged structures" that can be searched for in the rest of the HTS output and other databases as well as having synthesis follow-up. A typical workflow for a fragment screen within AstraZeneca is shown below (Figure 24) and highlights the desirability (particularly when screening >100 microM) for NMR and X-ray information to validate weak hits and give information on how to optimise them. In this chapter, we have provided an introduction to the theoretical and practical issues associated with the use of fragment methods and lead-likeness. Fragment-based approaches are still in an early stage of development and are just one of many interrelated techniques that are now used to identify novel lead compounds for drug development. Fragment based screening has some advantages, but like every other drug hunting strategy will not be universally applicable. There are in particular some practical challenges associated with fragment screening that relate to the generally lower level of potency that such compounds initially possess. Considerable synthetic effort has to be applied for post-fragment screening to build the sort of potency that would be expected to be found from a traditional HTS. However, if there are no low-hanging fruit in a screening collection to be found by HTS then the use of fragment screening can help find novelty that may lead to a target not being discarded as intractable. As such, the approach offers some significant advantages by providing less complex molecules, which may have better potential for novel drug optimisation and by enabling new chemical space to be more effectively explored. Many literature examples that cover examples of fragment screening approaches are still at the "proof of concept" stage and although delivering inhibitors or ligands, may still prove to be unsuitable when further ADMET and toxicity profiling is done. The next few years should see a maturing of the area, and as our understanding of how the concepts can be best applied, there are likely to be many more examples of attractive, small molecule hits, leads and candidate drugs derived from the approaches described.


Assuntos
Avaliação Pré-Clínica de Medicamentos/métodos , Técnicas de Química Combinatória , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Quinases da Glicogênio Sintase/química , Cinética , Peso Molecular
7.
Curr Top Med Chem ; 7(16): 1600-29, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17979771

RESUMO

Fragment-based lead generation (FBLG) has recently emerged as an alternative to traditional high throughput screening (HTS) to identify initial chemistry starting points for drug discovery programs. In comparison to HTS screening libraries, the screening sets for FBLG tend to contain orders of magnitude fewer compounds, and the compounds themselves are less structurally complex and have lower molecular weight. This report summarises the advent of FBLG within the industry and then describes the FBLG experience at AstraZeneca. We discuss (1) optimising the design of screening libraries, (2) hit detection methodologies, (3) evaluation of hit quality and use of ligand efficiency calculations, and (4) approaches to evolve fragment-based, low complexity hits towards drug-like leads. Furthermore, we exemplify our use of FBLG with case studies in the following drug discovery areas: antibacterial enzyme targets, GPCRs (melanocortin 4 receptor modulators), prostaglandin D2 synthase inhibitors, phosphatase inhibitors (protein tyrosine phosphotase 1B), and protease inhibitors (b-secretase).


Assuntos
Desenho de Fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas , Técnicas de Química Combinatória , Indústria Farmacêutica/métodos , Inibidores Enzimáticos , Ligantes , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA