Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Pharmacol Exp Ther ; 352(2): 305-14, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25467132

RESUMO

Liver X Receptors (LXRs) α and ß are nuclear hormone receptors that regulate multiple genes involved in reverse cholesterol transport (RCT) and are potential drug targets for atherosclerosis. However, full pan agonists also activate lipogenic genes, resulting in elevated plasma and hepatic lipids. We report the pharmacology of BMS-779788 [2-(2-(1-(2-chlorophenyl)-1-methylethyl)-1-(3'-(methylsulfonyl)-4-biphenylyl)-1H-imidazol-4-yl)-2-propanol], a potent partial LXR agonist with LXRß selectivity, which has an improved therapeutic window in the cynomolgus monkey compared with a full pan agonist. BMS-779788 induced LXR target genes in blood in vivo with an EC50 = 610 nM, a value similar to its in vitro blood gene induction potency. BMS-779788 was 29- and 12-fold less potent than the full agonist T0901317 in elevating plasma triglyceride and LDL cholesterol, respectively, with similar results for plasma cholesteryl ester transfer protein and apolipoprotein B. However, ABCA1 and ABCG1 mRNA inductions in blood, which are critical for RCT, were comparable. Increased liver triglyceride was observed after 7-day treatment with BMS-779788 at the highest dose tested and was nearly identical to the dose response for plasma triglyceride, consistent with the central role of liver LXR in these lipogenic effects. Dose-dependent increases in biliary cholesterol and decreases in phospholipid and bile acid occurred in BMS-779788-treated animals, similar to LXR agonist effects reported in mouse. In summary, BMS-779788, a partial LXRß selective agonist, has decreased lipogenic potential compared with a full pan agonist in cynomolgus monkeys, with similar potency in the induction of genes known to stimulate RCT. This provides support in nonhuman primates for improving LXR agonist therapeutic windows by limiting LXRα activity.


Assuntos
Anticolesterolemiantes/farmacologia , Imidazóis/farmacologia , Fígado/efeitos dos fármacos , Receptores Nucleares Órfãos/agonistas , Sulfonas/farmacologia , Transportadores de Cassetes de Ligação de ATP/sangue , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Anticolesterolemiantes/administração & dosagem , Anticolesterolemiantes/sangue , Relação Dose-Resposta a Droga , Agonismo Parcial de Drogas , Imidazóis/administração & dosagem , Imidazóis/sangue , Lipídeos/sangue , Lipogênese/efeitos dos fármacos , Fígado/metabolismo , Receptores X do Fígado , Macaca fascicularis , Masculino , Sulfonas/administração & dosagem , Sulfonas/sangue , Triglicerídeos/metabolismo
2.
Bioorg Med Chem Lett ; 20(9): 2933-7, 2010 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-20356736

RESUMO

The synthesis and follow-up SAR studies of our development candidate 1 by incorporating 2-aryl-4-oxazolylmethoxy and 2-aryl-4-thiazolylmethoxy moieties into the oxybenzylglycine framework of the PPARalpha/gamma dual agonist muraglitazar is described. SAR studies indicate that different substituents on the aryloxazole/thiazole moieties as well as the choice of carbamate substituent on the glycine moiety can significantly modulate the selectivity of PPARalpha versus PPARgamma. Potent, highly selective PPARalpha activators 2a and 2l, as well as PPARalpha activators with significant PPARgamma activity, such as 2s, were identified. The in vivo pharmacology of these compounds in preclinical animal models as well as their ADME profiles are discussed.


Assuntos
Anti-Inflamatórios/síntese química , Glicina/análogos & derivados , PPAR alfa/agonistas , PPAR gama/agonistas , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacocinética , Sítios de Ligação , Cricetinae , Cristalografia por Raios X , Glicina/síntese química , Glicina/farmacocinética , Humanos , Masculino , PPAR alfa/metabolismo , PPAR gama/metabolismo , Ratos , Ratos Sprague-Dawley , Relação Estrutura-Atividade
3.
J Pharmacol Exp Ther ; 327(3): 716-26, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18799592

RESUMO

The first generation peroxisome proliferator-activated receptor (PPAR) alpha agonist gemfibrozil reduces the risk of major cardiovascular events; therefore, more potent PPARalpha agonists for the treatment of cardiovascular diseases have been actively sought. We describe two novel, potent oxybenzylglycine PPARalpha-selective agonists, BMS-687453 [N-[[3-[[2-(4-chlorophenyl)-5-methyl-4-oxazolyl]methoxy]phenyl]methyl]-N-(methoxycarbonyl)-glycine] and BMS-711939 N-[[5-[[2-(4-chlorophenyl)-5-methyl-4-oxazolyl]methoxy]-2-fluorophenyl]methyl]-N-(methoxycarbonyl)-glycine], that robustly increase apolipoprotein (Apo) A1 and high-density lipoprotein cholesterol in human ApoA1 transgenic mice and lower low-density lipoprotein-cholesterol and triglycerides in fat-fed hamsters. These compounds have much lower potency against mouse PPARalpha than human PPARalpha; therefore, they were tested in PPARalpha-humanized mice that do not express murine PPARalpha but express human PPARalpha selectively in the liver. We developed hepatic gene induction as a novel biomarker for efficacy and demonstrate hepatic gene induction at very low doses of these compounds. BMS-711939 induces fecal cholesterol excretion, which is further increased upon cotreatment with a liver X receptor (LXR) agonist. It is surprising that this synergistic increase upon coadministration is also observed in mice that express PPARalpha in the liver only. BMS-711939 also prevented the LXR agonist-induced elevation of serum triglycerides. Such PPARalpha agonists could be attractive candidates to explore for the treatment of cardiovascular diseases, especially in combination with a suitable LXR agonist.


Assuntos
Colesterol/metabolismo , Proteínas de Ligação a DNA/agonistas , Lipoproteínas HDL/sangue , Lipoproteínas LDL/sangue , PPAR alfa/agonistas , Receptores Citoplasmáticos e Nucleares/agonistas , Triglicerídeos/sangue , Animais , Sinergismo Farmacológico , Humanos , Fígado/metabolismo , Receptores X do Fígado , Camundongos , Camundongos Transgênicos , Receptores Nucleares Órfãos , Ativação Transcricional/efeitos dos fármacos
4.
ACS Med Chem Lett ; 7(12): 1207-1212, 2016 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-27994765

RESUMO

Introducing a uniquely substituted phenyl sulfone into a series of biphenyl imidazole liver X receptor (LXR) agonists afforded a dramatic potency improvement for induction of ATP binding cassette transporters, ABCA1 and ABCG1, in human whole blood. The agonist series demonstrated robust LXRß activity (>70%) with low partial LXRα agonist activity (<25%) in cell assays, providing a window between desired blood cell ABCG1 gene induction in cynomolgus monkeys and modest elevation of plasma triglycerides for agonist 15. The addition of polarity to the phenyl sulfone also reduced binding to the plasma protein, human α-1-acid glycoprotein. Agonist 15 was selected for clinical development based on the favorable combination of in vitro properties, excellent pharmacokinetic parameters, and a favorable lipid profile.

5.
Cell Metab ; 24(2): 223-33, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27508871

RESUMO

The development of LXR agonists for the treatment of coronary artery disease has been challenged by undesirable properties in animal models. Here we show the effects of an LXR agonist on lipid and lipoprotein metabolism and neutrophils in human subjects. BMS-852927, a novel LXRß-selective compound, had favorable profiles in animal models with a wide therapeutic index in cynomolgus monkeys and mice. In healthy subjects and hypercholesterolemic patients, reverse cholesterol transport pathways were induced similarly to that in animal models. However, increased plasma and hepatic TG, plasma LDL-C, apoB, apoE, and CETP and decreased circulating neutrophils were also evident. Furthermore, similar increases in LDL-C were observed in normocholesterolemic subjects and statin-treated patients. The primate model markedly underestimated human lipogenic responses and did not predict human neutrophil effects. These studies demonstrate both beneficial and adverse LXR agonist clinical responses and emphasize the importance of further translational research in this area.


Assuntos
Movimento Celular , Imidazóis/efeitos adversos , Imidazóis/farmacologia , Metabolismo dos Lipídeos , Lipoproteínas/metabolismo , Receptores X do Fígado/agonistas , Neutrófilos/metabolismo , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Tecido Adiposo/metabolismo , Adolescente , Adulto , Animais , Movimento Celular/efeitos dos fármacos , Colesterol/sangue , Colesterol/metabolismo , Voluntários Saudáveis , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Hipercolesterolemia/sangue , Hipercolesterolemia/tratamento farmacológico , Imidazóis/uso terapêutico , Contagem de Leucócitos , Lipoproteínas/sangue , Macaca fascicularis , Macrófagos/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Sistema Fagocitário Mononuclear/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ratos , Triglicerídeos/sangue , Adulto Jovem
6.
ACS Med Chem Lett ; 7(6): 590-4, 2016 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-27326332

RESUMO

BMS-711939 (3) is a potent and selective peroxisome proliferator-activated receptor (PPAR) α agonist, with an EC50 of 4 nM for human PPARα and >1000-fold selectivity vs human PPARγ (EC50 = 4.5 µM) and PPARδ (EC50 > 100 µM) in PPAR-GAL4 transactivation assays. Compound 3 also demonstrated excellent in vivo efficacy and safety profiles in preclinical studies and thus was chosen for further preclinical evaluation. The synthesis, structure-activity relationship (SAR) studies, and in vivo pharmacology of 3 in preclinical animal models as well as its ADME profile are described.

7.
J Med Chem ; 53(7): 2854-64, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-20218621

RESUMO

An 1,3-oxybenzylglycine based compound 2 (BMS-687453) was discovered to be a potent and selective peroxisome proliferator activated receptor (PPAR) alpha agonist, with an EC(50) of 10 nM for human PPARalpha and approximately 410-fold selectivity vs human PPARgamma in PPAR-GAL4 transactivation assays. Similar potencies and selectivity were also observed in the full length receptor co-transfection assays. Compound 2 has negligible cross-reactivity against a panel of human nuclear hormone receptors including PPARdelta. Compound 2 demonstrated an excellent pharmacological and safety profile in preclinical studies and thus was chosen as a development candidate for the treatment of atherosclerosis and dyslipidemia. The X-ray cocrystal structures of the early lead compound 12 and compound 2 in complex with PPARalpha ligand binding domain (LBD) were determined. The role of the crystal structure of compound 12 with PPARalpha in the development of the SAR that ultimately resulted in the discovery of compound 2 is discussed.


Assuntos
Descoberta de Drogas , Glicina/análogos & derivados , Oxazóis/química , Oxazóis/farmacologia , PPAR alfa/agonistas , Animais , Linhagem Celular , Cricetinae , Cristalografia por Raios X , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Glicina/síntese química , Glicina/química , Glicina/farmacologia , Glicina/toxicidade , Humanos , Masculino , Camundongos , Modelos Moleculares , Oxazóis/síntese química , Oxazóis/toxicidade , PPAR alfa/química , PPAR alfa/genética , Estrutura Terciária de Proteína , Especificidade por Substrato , Ativação Transcricional/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA