Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Cell ; 186(6): 1244-1262.e34, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36931247

RESUMO

In prokaryotes, translation can occur on mRNA that is being transcribed in a process called coupling. How the ribosome affects the RNA polymerase (RNAP) during coupling is not well understood. Here, we reconstituted the E. coli coupling system and demonstrated that the ribosome can prevent pausing and termination of RNAP and double the overall transcription rate at the expense of fidelity. Moreover, we monitored single RNAPs coupled to ribosomes and show that coupling increases the pause-free velocity of the polymerase and that a mechanical assisting force is sufficient to explain the majority of the effects of coupling. Also, by cryo-EM, we observed that RNAPs with a terminal mismatch adopt a backtracked conformation, while a coupled ribosome allosterically induces these polymerases toward a catalytically active anti-swiveled state. Finally, we demonstrate that prolonged RNAP pausing is detrimental to cell viability, which could be prevented by polymerase reactivation through a coupled ribosome.


Assuntos
Proteínas de Escherichia coli , Transcrição Gênica , Escherichia coli/genética , Escherichia coli/metabolismo , RNA Polimerases Dirigidas por DNA/genética , Ribossomos/metabolismo , Proteínas de Escherichia coli/genética
2.
Cell ; 152(1-2): 120-31, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23332750

RESUMO

A mechanistic description of metazoan transcription is essential for understanding the molecular processes that govern cellular decisions. To provide structural insights into the DNA recognition step of transcription initiation, we used single-particle electron microscopy (EM) to visualize human TFIID with promoter DNA. This analysis revealed that TFIID coexists in two predominant and distinct structural states that differ by a 100 Å translocation of TFIID's lobe A. The transition between these structural states is modulated by TFIIA, as the presence of TFIIA and promoter DNA facilitates the formation of a rearranged state of TFIID that enables promoter recognition and binding. DNA labeling and footprinting, together with cryo-EM studies, were used to map the locations of TATA, Initiator (Inr), motif ten element (MTE), and downstream core promoter element (DPE) promoter motifs within the TFIID-TFIIA-DNA structure. The existence of two structurally and functionally distinct forms of TFIID suggests that the different conformers may serve as specific targets for the action of regulatory factors.


Assuntos
Regiões Promotoras Genéticas , Fator de Transcrição TFIID/química , Fator de Transcrição TFIID/metabolismo , Transcrição Gênica , Microscopia Crioeletrônica , DNA/genética , Humanos , Conformação Proteica , RNA Polimerase II/química , RNA Polimerase II/metabolismo , TATA Box , Fator de Transcrição TFIIA/metabolismo , Fator de Transcrição TFIID/ultraestrutura , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo
3.
Proc Natl Acad Sci U S A ; 117(22): 12452-12463, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32404426

RESUMO

Plastid isoprenoid-derived carotenoids serve essential roles in chloroplast development and photosynthesis. Although nearly all enzymes that participate in the biosynthesis of carotenoids in plants have been identified, the complement of auxiliary proteins that regulate synthesis, transport, sequestration, and degradation of these molecules and their isoprenoid precursors have not been fully described. To identify such proteins that are necessary for the optimal functioning of oxygenic photosynthesis, we screened a large collection of nonphotosynthetic (acetate-requiring) DNA insertional mutants of Chlamydomonas reinhardtii and isolated cpsfl1 The cpsfl1 mutant is extremely light-sensitive and susceptible to photoinhibition and photobleaching. The CPSFL1 gene encodes a CRAL-TRIO hydrophobic ligand-binding (Sec14) domain protein. Proteins containing this domain are limited to eukaryotes, but some may have been retargeted to function in organelles of endosymbiotic origin. The cpsfl1 mutant showed decreased accumulation of plastidial isoprenoid-derived pigments, especially carotenoids, and whole-cell focused ion-beam scanning-electron microscopy revealed a deficiency of carotenoid-rich chloroplast structures (e.g., eyespot and plastoglobules). The low carotenoid content resulted from impaired biosynthesis at a step prior to phytoene, the committed precursor to carotenoids. The CPSFL1 protein bound phytoene and ß-carotene when expressed in Escherichia coli and phosphatidic acid in vitro. We suggest that CPSFL1 is involved in the regulation of phytoene synthesis and carotenoid transport and thereby modulates carotenoid accumulation in the chloroplast.


Assuntos
Carotenoides/metabolismo , Chlamydomonas reinhardtii/crescimento & desenvolvimento , Cloroplastos/metabolismo , Proteínas de Plantas/metabolismo , Chlamydomonas reinhardtii/classificação , Chlamydomonas reinhardtii/genética , Chlamydomonas reinhardtii/metabolismo , Cloroplastos/química , Cloroplastos/genética , Fotossíntese , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Domínios Proteicos
4.
Proc Natl Acad Sci U S A ; 112(48): 14817-22, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26627236

RESUMO

The Xeroderma pigmentosum complementation group C (XPC) complex is a versatile factor involved in both nucleotide excision repair and transcriptional coactivation as a critical component of the NANOG, OCT4, and SOX2 pluripotency gene regulatory network. Here we present the structure of the human holo-XPC complex determined by single-particle electron microscopy to reveal a flexible, ear-shaped structure that undergoes localized loss of order upon DNA binding. We also determined the structure of the complete yeast homolog Rad4 holo-complex to find a similar overall architecture to the human complex, consistent with their shared DNA repair functions. Localized differences between these structures reflect an intriguing phylogenetic divergence in transcriptional capabilities that we present here. Having positioned the constituent subunits by tagging and deletion, we propose a model of key interaction interfaces that reveals the structural basis for this difference in functional conservation. Together, our findings establish a framework for understanding the structure-function relationships of the XPC complex in the interplay between transcription and DNA repair.


Assuntos
Reparo do DNA , Proteínas de Ligação a DNA/química , Complexos Multiproteicos/química , Animais , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/química , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Fatores de Transcrição SOXB1/química , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição SOXB1/metabolismo , Relação Estrutura-Atividade
5.
Genes Dev ; 23(13): 1510-21, 2009 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-19571180

RESUMO

Sequence-specific DNA-binding activators, key regulators of gene expression, stimulate transcription in part by targeting the core promoter recognition TFIID complex and aiding in its recruitment to promoter DNA. Although it has been established that activators can interact with multiple components of TFIID, it is unknown whether common or distinct surfaces within TFIID are targeted by activators and what changes if any in the structure of TFIID may occur upon binding activators. As a first step toward structurally dissecting activator/TFIID interactions, we determined the three-dimensional structures of TFIID bound to three distinct activators (i.e., the tumor suppressor p53 protein, glutamine-rich Sp1 and the oncoprotein c-Jun) and compared their structures as determined by electron microscopy and single-particle reconstruction. By a combination of EM and biochemical mapping analysis, our results uncover distinct contact regions within TFIID bound by each activator. Unlike the coactivator CRSP/Mediator complex that undergoes drastic and global structural changes upon activator binding, instead, a rather confined set of local conserved structural changes were observed when each activator binds holo-TFIID. These results suggest that activator contact may induce unique structural features of TFIID, thus providing nanoscale information on activator-dependent TFIID assembly and transcription initiation.


Assuntos
Modelos Moleculares , Multimerização Proteica/fisiologia , Fator de Transcrição TFIID/química , Fator de Transcrição TFIID/metabolismo , Células HeLa , Humanos , Imageamento Tridimensional , Imunoglobulinas/química , Imunoglobulinas/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Proteínas Proto-Oncogênicas c-jun/química , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fatores Associados à Proteína de Ligação a TATA/metabolismo , Proteína Supressora de Tumor p53/química , Proteína Supressora de Tumor p53/metabolismo
6.
Proc Natl Acad Sci U S A ; 109(2): 478-83, 2012 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-22184212

RESUMO

Bacterial microcompartments are proteinaceous complexes that catalyze metabolic pathways in a manner reminiscent of organelles. Although microcompartment structure is well understood, much less is known about their assembly and function in vivo. We show here that carboxysomes, CO(2)-fixing microcompartments encoded by 10 genes, can be heterologously produced in Escherichia coli. Expression of carboxysomes in E. coli resulted in the production of icosahedral complexes similar to those from the native host. In vivo, the complexes were capable of both assembling with carboxysomal proteins and fixing CO(2). Characterization of purified synthetic carboxysomes indicated that they were well formed in structure, contained the expected molecular components, and were capable of fixing CO(2) in vitro. In addition, we verify association of the postulated pore-forming protein CsoS1D with the carboxysome and show how it may modulate function. We have developed a genetic system capable of producing modular carbon-fixing microcompartments in a heterologous host. In doing so, we lay the groundwork for understanding these elaborate protein complexes and for the synthetic biological engineering of self-assembling molecular structures.


Assuntos
Proteínas de Bactérias/metabolismo , Compartimento Celular/fisiologia , Halothiobacillus/química , Complexos Multiproteicos/metabolismo , Regulon/genética , Dióxido de Carbono/metabolismo , Centrifugação , Eletroforese em Gel de Poliacrilamida , Escherichia coli , Proteínas de Fluorescência Verde , Halothiobacillus/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo
7.
Biophys J ; 106(9): 1864-70, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24806918

RESUMO

Remodeling of thylakoid membranes in response to illumination is an important process for the regulation of photosynthesis. We investigated the thylakoid network from Arabidopsis thaliana using atomic force microscopy to capture dynamic changes in height, elasticity, and viscosity of isolated thylakoid membranes caused by changes in illumination. We also correlated the mechanical response of the thylakoid network with membrane ultrastructure using electron microscopy. We find that the elasticity of the thylakoid membranes increases immediately upon PSII-specific illumination, followed by a delayed height change. Direct visualization by electron microscopy confirms that there is a significant change in the packing repeat distance of the membrane stacks in response to illumination. Although experiments with Gramicidin show that the change in elasticity depends primarily on the transmembrane pH gradient, the height change requires both the pH gradient and STN7-kinase-dependent phosphorylation of LHCII. Our studies indicate that lumen expansion in response to illumination is not simply a result of the influx of water, and we propose a dynamic model in which protein interactions within the lumen drive these changes.


Assuntos
Arabidopsis/citologia , Luz , Fenômenos Mecânicos , Complexo de Proteína do Fotossistema II/metabolismo , Tilacoides/metabolismo , Tilacoides/efeitos da radiação , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Fenômenos Biomecânicos/efeitos da radiação , Elasticidade , Concentração de Íons de Hidrogênio , Microscopia de Força Atômica , Fosforilação/efeitos da radiação , Proteínas Serina-Treonina Quinases/metabolismo
8.
PLoS Biol ; 9(3): e1000603, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21468301

RESUMO

The macromolecular assembly required to initiate transcription of protein-coding genes, known as the Pre-Initiation Complex (PIC), consists of multiple protein complexes and is approximately 3.5 MDa in size. At the heart of this assembly is the Mediator complex, which helps regulate PIC activity and interacts with the RNA polymerase II (pol II) enzyme. The structure of the human Mediator-pol II interface is not well-characterized, whereas attempts to structurally define the Mediator-pol II interaction in yeast have relied on incomplete assemblies of Mediator and/or pol II and have yielded inconsistent interpretations. We have assembled the complete, 1.9 MDa human Mediator-pol II-TFIIF complex from purified components and have characterized its structural organization using cryo-electron microscopy and single-particle reconstruction techniques. The orientation of pol II within this assembly was determined by crystal structure docking and further validated with projection matching experiments, allowing the structural organization of the entire human PIC to be envisioned. Significantly, pol II orientation within the Mediator-pol II-TFIIF assembly can be reconciled with past studies that determined the location of other PIC components relative to pol II itself. Pol II surfaces required for interacting with TFIIB, TFIIE, and promoter DNA (i.e., the pol II cleft) are exposed within the Mediator-pol II-TFIIF structure; RNA exit is unhindered along the RPB4/7 subunits; upstream and downstream DNA is accessible for binding additional factors; and no major structural re-organization is necessary to accommodate the large, multi-subunit TFIIH or TFIID complexes. The data also reveal how pol II binding excludes Mediator-CDK8 subcomplex interactions and provide a structural basis for Mediator-dependent control of PIC assembly and function. Finally, parallel structural analysis of Mediator-pol II complexes lacking TFIIF reveal that TFIIF plays a key role in stabilizing pol II orientation within the assembly.


Assuntos
Complexo Mediador/química , Complexos Multiproteicos/química , RNA Polimerase II/química , Fatores de Transcrição TFII/química , Microscopia Crioeletrônica , Humanos , Espectrometria de Massas , Complexo Mediador/metabolismo , Modelos Moleculares , Complexos Multiproteicos/metabolismo , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , RNA Polimerase II/metabolismo , Fatores de Transcrição TFII/metabolismo
9.
Proc Natl Acad Sci U S A ; 108(29): E304-13, 2011 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-21705659

RESUMO

Understanding the molecular principles of synaptic vesicle fusion is a long-sought goal. It requires the development of a synthetic system that allows manipulations and observations not possible in vivo. Here, we report an in vitro system with reconstituted synaptic proteins that meets the long-sought goal to produce fast content release in the millisecond time regime upon Ca(2+) triggering. Our system simultaneously monitors both content and lipid exchange, and it starts from stable interacting pairs of donor and acceptor vesicles, mimicking the readily releasable pool of synaptic vesicles prior to an action potential. It differentiates between single-vesicle interaction, hemifusion, and complete fusion, the latter mimicking quantized neurotransmitter release upon exocytosis of synaptic vesicles. Prior to Ca(2+) injection, the system is in a state in which spontaneous fusion events between donor and acceptor vesicles are rare. Upon Ca(2+) injection, a rapid burst of complete fusion events emerges, followed by a biphasic decay. The present study focuses on neuronal SNAREs, the Ca(2+) sensor synaptotagmin 1, and the modulator complexin. However, other synaptic proteins could be added and their function examined. Ca(2+) triggering is cooperative, requiring the presence of synaptotagmin, whereas SNAREs alone do not produce a fast fusion burst. Manipulations of the system mimic effects observed in vivo. These results also show that neuronal SNAREs alone do not efficiently produce complete fusion, that the combination of SNAREs with synaptotagmin lowers the activation barriers to full fusion, and that complexin enhances this kinetic control.


Assuntos
Exocitose/fisiologia , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Neurotransmissores/metabolismo , Proteínas SNARE/metabolismo , Vesículas Sinápticas/metabolismo , Sinaptotagmina I/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Escherichia coli , Fluorescência , Processamento de Imagem Assistida por Computador , Técnicas In Vitro , Lipídeos , Proteínas do Tecido Nervoso/isolamento & purificação , Ratos , Proteínas SNARE/isolamento & purificação , Spodoptera , Vesículas Sinápticas/fisiologia , Sinaptotagmina I/isolamento & purificação
10.
Nat Commun ; 15(1): 5456, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937455

RESUMO

Stramenopile algae contribute significantly to global primary productivity, and one class, Eustigmatophyceae, is increasingly studied for applications in high-value lipid production. Yet much about their basic biology remains unknown, including the nature of an enigmatic, pigmented globule found in vegetative cells. Here, we present an in-depth examination of this "red body," focusing on Nannochloropsis oceanica. During the cell cycle, the red body forms adjacent to the plastid, but unexpectedly it is secreted and released with the autosporangial wall following cell division. Shed red bodies contain antioxidant ketocarotenoids, and overexpression of a beta-carotene ketolase results in enlarged red bodies. Infrared spectroscopy indicates long-chain, aliphatic lipids in shed red bodies and cell walls, and UHPLC-HRMS detects a C32 alkyl diol, a potential precursor of algaenan, a recalcitrant cell wall polymer. We propose that the red body transports algaenan precursors from plastid to apoplast to be incorporated into daughter cell walls.


Assuntos
Parede Celular , Plastídeos , Estramenópilas , Parede Celular/metabolismo , Estramenópilas/metabolismo , Plastídeos/metabolismo
11.
Nat Struct Mol Biol ; 13(8): 684-90, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16829958

RESUMO

Structural details of initiator proteins for DNA replication have provided clues to the molecular events in this process. EM reconstructions of the Drosophila melanogaster origin recognition complex (ORC) reveal nucleotide-dependent conformational changes in the core of the complex. All five AAA+ domains in ORC contain a conserved structural element that, in DnaA, promotes formation of a right-handed helix, indicating that helical AAA+ substructures may be a feature of all initiators. A DnaA helical pentamer can be docked into ORC, and the location of Orc5 uniquely positions this core. The results suggest that ATP-dependent conformational changes observed in ORC derive from reorientation of the AAA+ domains. By analogy to the DNA-wrapping activity of DnaA, we posit that ORC together with Cdc6 prepares origin DNA for helicase loading through mechanisms related to the established pathway of prokaryotes.


Assuntos
Proteínas de Drosophila/química , Nucleotídeos/metabolismo , Complexo de Reconhecimento de Origem/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Microscopia Eletrônica , Modelos Moleculares , Dados de Sequência Molecular , Complexo de Reconhecimento de Origem/metabolismo , Conformação Proteica , Homologia de Sequência de Aminoácidos
12.
Proc Natl Acad Sci U S A ; 105(24): 8274-9, 2008 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-18550837

RESUMO

Mitotic yeast cells express five septins (Cdc3, Cdc10, Cdc11, Cdc12, and Shs1/Sep7). Only Shs1 is nonessential. The four essential septins form a complex containing two copies of each, but their arrangement was not known. Single-particle analysis by EM confirmed that the heterooligomer is octameric and revealed that the subunits are arrayed in a linear rod. Identity of each subunit was determined by examining complexes lacking a given septin, by antibody decoration, and by fusion to marker proteins (GFP or maltose binding protein). The rod has the order Cdc11-Cdc12-Cdc3-Cdc10-Cdc10-Cdc3-Cdc12-Cdc11 and, hence, lacks polarity. At low ionic strength, rods assemble end-to-end to form filaments but not when Cdc11 is absent or its N terminus is altered. Filaments invariably pair into long parallel "railroad tracks." Lateral association seems to be mediated by heterotetrameric coiled coils between the paired C-terminal extensions of Cdc3 and Cdc12 projecting orthogonally from each filament. Shs1 may be able to replace Cdc11 at the end of the rod. Our findings provide insights into the molecular mechanisms underlying the function and regulation of cellular septin structures.


Assuntos
Proteínas de Ciclo Celular/química , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Microscopia Eletrônica , Polímeros/química , Polímeros/metabolismo , Conformação Proteica , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
13.
MAbs ; 13(1): 1905978, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33843452

RESUMO

Monoclonal antibodies (mAbs) are the basis of treatments and diagnostics for pathogens and other biological phenomena. We conducted a structural characterization of mAbs against the N-terminal domain of nucleocapsid protein (NPNTD) from SARS-CoV-2 using small-angle X-ray scattering and transmission electron microscopy. Our solution-based results distinguished the mAbs' flexibility and how this flexibility affects the assembly of multiple mAbs on an antigen. By pairing two mAbs that bind different epitopes on the NPNTD, we show that flexible mAbs form a closed sandwich-like complex. With rigid mAbs, a juxtaposition of the antigen-binding fragments is prevented, enforcing a linear arrangement of the mAb pair, which facilitates further mAb polymerization. In a modified sandwich enzyme-linked immunosorbent assay, we show that rigid mAb-pairings with linear polymerization led to increased NPNTD detection sensitivity. These enhancements can expedite the development of more sensitive and selective antigen-detecting point-of-care lateral flow devices, which are critical for early diagnosis and epidemiological studies of SARS-CoV-2 and other pathogens.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , COVID-19/imunologia , Epitopos/imunologia , Proteínas do Nucleocapsídeo/imunologia , SARS-CoV-2/enzimologia , Animais , Humanos
14.
J Struct Biol ; 166(2): 234-40, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19236920

RESUMO

Commonly employed data models for maximum likelihood refinement of electron microscopy images behave poorly in the presence of normalization errors. Small variations in background mean or signal brightness are relatively common in cryo-electron microscopy data, and varying signal-to-noise ratios or artifacts in the images interfere with standard normalization procedures. In this paper, a statistical data model that accounts for normalization errors is presented, and a corresponding algorithm for maximum likelihood classification of structurally heterogeneous projection data is derived. The extended data model has general relevance, since similar algorithms may be derived for other maximum likelihood approaches in the field. The potentials of this approach are illustrated for two structurally heterogeneous data sets: 70S E.coli ribosomes and human RNA polymerase II complexes. In both cases, maximum likelihood classification based on the conventional data model failed, whereas the new approach was capable of revealing previously unobserved conformations.


Assuntos
Funções Verossimilhança , Microscopia Eletrônica/métodos , Algoritmos , Escherichia coli/ultraestrutura , Humanos , Modelos Teóricos , RNA Polimerase II/ultraestrutura , Ribossomos/ultraestrutura
15.
Methods Enzymol ; 625: 177-204, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31455527

RESUMO

The NAIP-NLRC4 family of inflammasomes are components of the innate immune system that sound a molecular alarm in the presence of intracellular pathogens. In this chapter, we provide an in-depth guide to using cryo-electron microscopy (cryo-EM) to investigate these inflammasomes, focusing especially on the techniques we used in our recent structural analysis of the NAIP5-NLRC4 inflammasome. We explain how to circumvent specific obstacles we encountered at each step, from sample preparation through data processing. The methods described here will be useful for further studies of the NAIP5-NLRC4 inflammasome and related supracomplexes involved in innate immune surveillance; they may also be useful for unrelated complexes that present similar issues, such as preferential orientations and compositional heterogeneity.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/ultraestrutura , Microscopia Crioeletrônica/métodos , Inflamassomos/metabolismo , Inflamassomos/ultraestrutura , Proteína Inibidora de Apoptose Neuronal/metabolismo , Proteína Inibidora de Apoptose Neuronal/ultraestrutura , Animais , Humanos , Imunidade Inata/fisiologia
16.
Structure ; 14(11): 1691-700, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17098194

RESUMO

Transcription by RNA polymerase II (RNAPII) is a central process in eukaryotic gene regulation. While atomic details exist for the yeast RNAPII, characterization of the human complex lags behind, mostly due to the inability to obtain large quantities of purified material. Although the complexes have the same protein composition and high sequence similarity, understanding of transcription and of transcription-coupled DNA repair (TCR) in humans will require the use of human proteins in structural studies. We have used cryo-electron microscopy, image reconstruction, and variance analysis to characterize the structure and dynamics of human RNAPII (hRNAPII). Our studies show that hRNAPII in solution parallels the conformational flexibility of the yeast structures crystallized in different states but also illustrate a more extensive conformational range with potential biological significance. This hRNAPII study will serve as a structural platform to build up higher-order transcription and TCR complexes and to gain information that may be unique to the human RNAPII system.


Assuntos
RNA Polimerase II/química , Microscopia Crioeletrônica , Proteínas Fúngicas/química , Células HeLa , Humanos , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Microscopia Eletrônica , Modelos Moleculares , Conformação Molecular , Conformação Proteica , Transcrição Gênica
17.
Structure ; 14(3): 511-20, 2006 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-16531235

RESUMO

The multisubunit transcription factor TFIID is essential for directing eukaryotic promoter recognition and mediating interactions with activators/cofactors during assembly of the preinitiation complex. Despite its central role in transcription initiation and regulation, structural knowledge of the TFIID complex has so far been largely limited to electron microscopy studies of negatively stained samples. Here, we present a cryo-electron microscopy 3D reconstruction of the large endogenous human TFIID complex. The improved cryopreservation has allowed for a more detailed definition of the structural elements in the complex and for the detection, by an extensive statistical analysis of the data, of a conformational opening and closing of the cavity central to the TFIID architecture. We propose that these density rearrangements in the structure are a likely reflection of the plasticity of the interactions between TFIID and its many partner proteins.


Assuntos
Microscopia Crioeletrônica/métodos , Regulação da Expressão Gênica , Fator de Transcrição TFIID/química , Transcrição Gênica , Humanos , Ligação Proteica , Estrutura Terciária de Proteína , Fator de Transcrição TFIID/genética
18.
Nat Plants ; 4(11): 904-909, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30374090

RESUMO

The photosynthesis machinery in chloroplast thylakoid membranes is comprised of multiple protein complexes and supercomplexes1,2. Here, we show a novel supramolecular organization of photosystem I (PSI) in the moss Physcomitrella patens by single-particle cryo-electron microscopy. The moss-specific light-harvesting complex (LHC) protein Lhcb9 is involved in this PSI supercomplex, which has been shown to have a molecular density similar to that of the green alga Chlamydomonas reinhardtii3. Our results show that the structural organization is unexpectedly different-two rows of the LHCI belt exist as in C. reinhardtii4, but the outer one is shifted toward the PsaK side. Furthermore, one trimeric LHC protein and one monomeric LHC protein position alongside PsaL/K, filling the gap between these subunits and the outer LHCI belt. We provide evidence showing that Lhcb9 is a key factor, acting as a linkage between the PSI core and the outer LHCI belt to form the unique supramolecular organization of the PSI supercomplex in P. patens.


Assuntos
Bryopsida/metabolismo , Complexo de Proteína do Fotossistema II/metabolismo , Arabidopsis/metabolismo , Centrifugação com Gradiente de Concentração , Chlamydomonas reinhardtii/metabolismo , Microscopia Crioeletrônica , Complexo de Proteína do Fotossistema II/química , Estrutura Terciária de Proteína
20.
Science ; 358(6365): 888-893, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29146805

RESUMO

Robust innate immune detection of rapidly evolving pathogens is critical for host defense. Nucleotide-binding domain leucine-rich repeat (NLR) proteins function as cytosolic innate immune sensors in plants and animals. However, the structural basis for ligand-induced NLR activation has so far remained unknown. NAIP5 (NLR family, apoptosis inhibitory protein 5) binds the bacterial protein flagellin and assembles with NLRC4 to form a multiprotein complex called an inflammasome. Here we report the cryo-electron microscopy structure of the assembled ~1.4-megadalton flagellin-NAIP5-NLRC4 inflammasome, revealing how a ligand activates an NLR. Six distinct NAIP5 domains contact multiple conserved regions of flagellin, prying NAIP5 into an open and active conformation. We show that innate immune recognition of multiple ligand surfaces is a generalizable strategy that limits pathogen evolution and immune escape.


Assuntos
Flagelina/imunologia , Interações Hospedeiro-Patógeno/imunologia , Inflamassomos/imunologia , Proteína Inibidora de Apoptose Neuronal/imunologia , Animais , Proteínas Reguladoras de Apoptose/química , Proteínas Reguladoras de Apoptose/imunologia , Proteínas Reguladoras de Apoptose/ultraestrutura , Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/imunologia , Proteínas de Ligação ao Cálcio/ultraestrutura , Microscopia Crioeletrônica , Flagelina/química , Flagelina/ultraestrutura , Células HEK293 , Humanos , Imunidade Inata , Inflamassomos/química , Inflamassomos/ultraestrutura , Legionella pneumophila , Camundongos , Mutação , Proteína Inibidora de Apoptose Neuronal/química , Proteína Inibidora de Apoptose Neuronal/genética , Domínios Proteicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA