Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Microbiol ; 22(1): 105, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35421921

RESUMO

BACKGROUND: State-of-the-art renewal has indicated the improvement of diagnostics of patients with metabolic associated fatty liver disease (MAFLD) and/or type II diabetes mellitus (T2DM) by dissecting the clinical characteristics as well as genomic analysis. However, the deficiency of the characterization of microbial and metabolite signatures largely impedes the symptomatic treatment. METHODS: For the purpose, we retrospectively analyzed the clinical data of 20 patients with MAFLD (short for "M"), 20 cases with MAFLD and T2DM (short for "MD"), together with 19 healthy donors (short for "Ctr"). Microbial and metabolite analyses were further conducted to explore the similarities and differences among the aforementioned populations based on feces and blood samples, respectively. RESULTS: Compared with those in the Ctr group, patients with M or MD revealed multifaceted similarities (e.g., Age, ALP, LDL, BUN) and distinctions in clinical indicators of liver (e.g., BMI, ALT, PCHE, CAP). With the aid of microbial and metabolite analyses as well as bioinformatic analyses, we found that the characteristics of gut microbiota (e.g., abundance, hierarchical clustering, cladogram, species) and lipid metabolism (e.g., metabolite, correlation coefficient and scatter plot) were distinct among the indicated groups. CONCLUSIONS: The patients with MD revealed multifaceted similarities and distinctions in characteristics of microbiome and metabolites with those in the M and HD groups, and in particular, the significantly expressed microbes (e.g., Elusimicrobiota, Berkelbacteria, Cyanobacteria, Peregrinibacteria) and lipid metabolites (e.g., Lipid-Q-P-0765, Lipid-Q-P-0216, Lipid-Q-P-0034, Lipid-Q-P-0800), which would collectively benefit the clinical diagnosis of MAFLD and T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Bactérias/genética , Diabetes Mellitus Tipo 2/complicações , Microbioma Gastrointestinal/genética , Humanos , Lipídeos , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Estudos Retrospectivos
2.
Clinics (Sao Paulo) ; 76: e2502, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34495077

RESUMO

OBJECTIVES: Diagnosis and management of essential hypertension (EH) or type 2 diabetes mellitus (T2DM) by combining comprehensive treatment and classificatory diagnosis have been continuously improved. However, understanding the pathogenesis of EH patients with concomitant T2DM and subsequent treatment remain the major challenges owing to the lack of non-invasive biomarkers and information regarding the underlying mechanisms. METHODS: Herein, we collected 200 serum samples from EH and/or T2DM patients and healthy donors (N). Gene-expression profiling was conducted to identify candidate microRNAs with clinical significance. Then, a larger cohort of the aforementioned patients and 50 N were used to identify the correlation between the tumor suppressor miR-195-5p and EH and/or T2DM. The dual-luciferase reporter assay was used to explore the target genes of miR-195-5p. The suppressive effects of miR-195-5p on the 3'-UTR of the dopamine receptor D1 (DRD1) transcript in EH patients with concomitant T2DM were verified as well. RESULTS: Compared with that in other groups, serum miR-195-5p was highly downregulated in EH patients with concomitant T2DM. miR-195-5p overexpression efficiently suppressed DRD1 expression by binding to the two 3'-UTRs. Additionally, two single nucleotide polymorphisms, including 231T-A and 233C-G, in the miR-195-5p binding sites of the DRD1 3'-UTR were further identified. Collectively, we identified the potential clinical significance of DRD1 regulation by miR-195-5p in EH patients with concomitant T2DM. CONCLUSIONS: Our data suggested that miR-195-5p circulating in the peripheral blood served as a novel biomarker and therapeutic target for EH and T2DM, which could eventually help address major challenges during the diagnosis and treatment of EH and T2DM.


Assuntos
Diabetes Mellitus Tipo 2 , Hipertensão Essencial , MicroRNAs , Receptores de Dopamina D1 , Biomarcadores , Diabetes Mellitus Tipo 2/genética , Hipertensão Essencial/genética , Humanos , MicroRNAs/genética , Polimorfismo de Nucleotídeo Único , Receptores de Dopamina D1/genética
3.
Clinics ; 76: e2502, 2021. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1339695

RESUMO

OBJECTIVES: Diagnosis and management of essential hypertension (EH) or type 2 diabetes mellitus (T2DM) by combining comprehensive treatment and classificatory diagnosis have been continuously improved. However, understanding the pathogenesis of EH patients with concomitant T2DM and subsequent treatment remain the major challenges owing to the lack of non-invasive biomarkers and information regarding the underlying mechanisms. METHODS: Herein, we collected 200 serum samples from EH and/or T2DM patients and healthy donors (N). Gene-expression profiling was conducted to identify candidate microRNAs with clinical significance. Then, a larger cohort of the aforementioned patients and 50 N were used to identify the correlation between the tumor suppressor miR-195-5p and EH and/or T2DM. The dual-luciferase reporter assay was used to explore the target genes of miR-195-5p. The suppressive effects of miR-195-5p on the 3′-UTR of the dopamine receptor D1 (DRD1) transcript in EH patients with concomitant T2DM were verified as well. RESULTS: Compared with that in other groups, serum miR-195-5p was highly downregulated in EH patients with concomitant T2DM. miR-195-5p overexpression efficiently suppressed DRD1 expression by binding to the two 3′-UTRs. Additionally, two single nucleotide polymorphisms, including 231T-A and 233C-G, in the miR-195-5p binding sites of the DRD1 3′-UTR were further identified. Collectively, we identified the potential clinical significance of DRD1 regulation by miR-195-5p in EH patients with concomitant T2DM. CONCLUSIONS: Our data suggested that miR-195-5p circulating in the peripheral blood served as a novel biomarker and therapeutic target for EH and T2DM, which could eventually help address major challenges during the diagnosis and treatment of EH and T2DM.


Assuntos
Humanos , Receptores de Dopamina D1/genética , MicroRNAs/genética , Diabetes Mellitus Tipo 2/genética , Hipertensão Essencial/genética , Biomarcadores , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA