Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Front Neuroendocrinol ; 73: 101136, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38670433

RESUMO

Nestorone® (segesterone acetate) is a progestin with a chemical structure closely related to progesterone with high affinity and selectivity for the progesterone receptor without significant interaction with other steroid receptors. It has been developed for female and male contraception and is FDA-approved in a first long-acting contraceptive vaginal system for female contraception. Its safety has been extensively demonstrated in both preclinical and clinical studies for contraceptive indications. Nestorone was found to display neuroprotective and neuroregenerative activity in animal models of various central nervous system diseases, including multiple sclerosis, stroke, and amyotrophic lateral sclerosis. Reviewed herein are neuroprotective and myelin- regenerating properties of Nestorone in various animal models and its translational potential as a therapeutic agent for debilitating neurological diseases for which limited therapeutic options are available (Table 1).


Assuntos
Fármacos Neuroprotetores , Norprogesteronas , Animais , Humanos , Norprogesteronas/farmacologia , Fármacos Neuroprotetores/farmacologia , Regeneração Nervosa/efeitos dos fármacos , Regeneração Nervosa/fisiologia , Feminino
2.
Cell Mol Neurobiol ; 42(1): 23-40, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34138412

RESUMO

Progesterone regulates a number of processes in neurons and glial cells not directly involved in reproduction or sex behavior. Several neuroprotective effects are better observed under pathological conditions, as shown in the Wobbler mouse model of amyotrophic laterals sclerosis (ALS). Wobbler mice are characterized by forelimb atrophy due to motoneuron degeneration in the spinal cord, and include microgliosis and astrogliosis. Here we summarized current evidence on progesterone reversal of Wobbler neuropathology. We demonstrated that progesterone decreased motoneuron vacuolization with preservation of mitochondrial respiratory complex I activity, decreased mitochondrial expression and activity of nitric oxide synthase, increased Mn-dependent superoxide dismutase, stimulated brain-derived neurotrophic factor, increased the cholinergic phenotype of motoneurons, and enhanced survival with a concomitant decrease of death-related pathways. Progesterone also showed differential effects on glial cells, including increased oligodendrocyte density and downregulation of astrogliosis and microgliosis. These changes associate with reduced anti-inflammatory markers. The enhanced neurochemical parameters were accompanied by longer survival and increased muscle strength in tests of motor behavior. Because progesterone is locally metabolized to allopregnanolone (ALLO) in nervous tissues, we also studied neuroprotection by this derivative. Treatment of Wobbler mice with ALLO decreased oxidative stress and glial pathology, increased motoneuron viability and clinical outcome in a progesterone-like manner, suggesting that ALLO could mediate some progesterone effects in the spinal cord. In conclusion, the beneficial effects observed in different parameters support the versatile properties of progesterone and ALLO in a mouse model of motoneuron degeneration. The studies foresee future therapeutic opportunities with neuroactive steroids for deadly diseases like ALS.


Assuntos
Esclerose Lateral Amiotrófica , Fármacos Neuroprotetores , Esclerose Lateral Amiotrófica/patologia , Animais , Modelos Animais de Doenças , Camundongos , Neurônios Motores , Fármacos Neuroprotetores/metabolismo , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Pregnanolona/metabolismo , Pregnanolona/farmacologia , Pregnanolona/uso terapêutico , Progesterona/metabolismo , Progesterona/farmacologia , Progesterona/uso terapêutico , Medula Espinal/metabolismo
3.
Int J Mol Sci ; 21(15)2020 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-32722286

RESUMO

Progesterone has a broad spectrum of actions in the brain. Among these, the neuroprotective effects are well documented. Progesterone neural effects are mediated by multiple signaling pathways involving binding to specific receptors (intracellular progesterone receptors (PR); membrane-associated progesterone receptor membrane component 1 (PGRMC1); and membrane progesterone receptors (mPRs)) and local bioconversion to 3α,5α-tetrahydroprogesterone (3α,5α-THPROG), which modulates GABAA receptors. This brief review aims to give an overview of the synthesis, metabolism, neuroprotective effects, and mechanism of action of progesterone in the rodent and human brain. First, we succinctly describe the biosynthetic pathways and the expression of enzymes and receptors of progesterone; as well as the changes observed after brain injuries and in neurological diseases. Then, we summarize current data on the differential fluctuations in brain levels of progesterone and its neuroactive metabolites according to sex, age, and neuropathological conditions. The third part is devoted to the neuroprotective effects of progesterone and 3α,5α-THPROG in different experimental models, with a focus on traumatic brain injury and stroke. Finally, we highlight the key role of the classical progesterone receptors (PR) in mediating the neuroprotective effects of progesterone after stroke.


Assuntos
Lesões Encefálicas/metabolismo , Encéfalo/metabolismo , Modelos Neurológicos , Fármacos Neuroprotetores/metabolismo , Neuroesteroides/metabolismo , Progesterona/metabolismo , Animais , Encéfalo/patologia , Lesões Encefálicas/patologia , Feminino , Humanos , Masculino , Proteínas de Membrana/metabolismo , Receptores de Progesterona/metabolismo , Caracteres Sexuais
4.
Int J Mol Sci ; 21(6)2020 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-32244957

RESUMO

Glucocorticoids are crucial for stress-coping, resilience, and adaptation. However, if the stress hormones become dysregulated, the vulnerability to stress-related diseases is enhanced. In this brief review, we discuss the role of glucocorticoids in the pathogenesis of neurodegenerative disorders in both human and animal models, and focus in particular on amyotrophic lateral sclerosis (ALS). For this purpose, we used the Wobbler animal model, which mimics much of the pathology of ALS including a dysfunctional hypothalamic-pituitary-adrenal axis. We discuss recent studies that demonstrated that the pathological cascade characteristic for motoneuron degeneration of ALS is mimicked in the genetically selected Wobbler mouse and can be attenuated by treatment with the selective glucocorticoid receptor antagonist (GRA) CORT113176. In long-term treatment (3 weeks) GRA attenuated progression of the behavioral, inflammatory, excitatory, and cell-death-signaling pathways while increasing the survival signal of serine-threonine kinase (pAkt). The action mechanism of the GRA may be either by interfering with GR deactivation or by restoring the balance between pro- and anti-inflammatory signaling pathways driven by the complementary mineralocorticoid receptor (MR)- and GR-mediated actions of corticosterone. Accordingly, GR antagonism may have clinical relevance for the treatment of neurodegenerative diseases.


Assuntos
Doenças Neurodegenerativas/tratamento farmacológico , Receptores de Glucocorticoides/metabolismo , Animais , Corticosterona/sangue , Corticosterona/química , Modelos Animais de Doenças , Humanos , Inflamação/sangue , Inflamação/complicações , Modelos Biológicos , Doenças Neurodegenerativas/sangue , Receptores de Glucocorticoides/antagonistas & inibidores
5.
Cell Mol Neurobiol ; 39(4): 551-568, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30302630

RESUMO

Both sex and steroid hormones are important to consider in human ischemic stroke and its experimental models. Stroke initiates a cascade of changes that lead to neural cell death, but also activates endogenous protective processes that counter the deleterious consequences of ischemia. Steroids may be part of these cerebroprotective processes. One option to provide cerebroprotection is to reinforce these intrinsic protective mechanisms. In the current review, we first summarize studies describing sex differences and the influence of steroid hormones in stroke. We then present and discuss our recent results concerning differential changes in endogenous steroid levels in the brains of male and female mice and the importance of progesterone receptors (PR) during the early phase after stroke. In the third part, we give an overview of experimental studies, including ours, that provide evidence for the pleiotropic beneficial effects of progesterone and its promising cerebroprotective potential in stroke. We also highlight the key role of PR signaling as well as potential additional mechanisms by which progesterone may provide cerebroprotection.


Assuntos
Progesterona/metabolismo , Acidente Vascular Cerebral/metabolismo , Animais , Feminino , Humanos , Masculino , Neuroproteção , Receptores de Progesterona/metabolismo , Caracteres Sexuais , Transdução de Sinais
6.
J Neurosci ; 37(45): 10998-11020, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28986464

RESUMO

Treatment with progesterone protects the male and female brain against damage after middle cerebral artery occlusion (MCAO). However, in both sexes, the brain contains significant amounts of endogenous progesterone. It is not known whether endogenously produced progesterone enhances the resistance of the brain to ischemic insult. Here, we used steroid profiling by gas chromatography-tandem mass spectrometry (GC-MS/MS) for exploring adaptive and sex-specific changes in brain levels of progesterone and its metabolites after MCAO. We show that, in the male mouse brain, progesterone is mainly metabolized via 5α-reduction leading to 5α-dihydroprogesterone (5α-DHP), also a progesterone receptor (PR) agonist ligand in neural cells, then to 3α,5α-tetrahydroprogesterone (3α,5α-THP). In the female mouse brain, levels of 5α-DHP and 3α,5α-THP are lower and levels of 20α-DHP are higher than in males. After MCAO, levels of progesterone and 5α-DHP are upregulated rapidly to pregnancy-like levels in the male but not in the female brain. To assess whether endogenous progesterone and 5α-DHP contribute to the resistance of neural cells to ischemic damage, we inactivated PR selectively in the CNS. Deletion of PR in the brain reduced its resistance to MCAO, resulting in increased infarct volumes and neurological deficits in both sexes. Importantly, endogenous PR ligands continue to protect the brain of aging mice. These results uncover the unexpected importance of endogenous progesterone and its metabolites in cerebroprotection. They also reveal that the female reproductive hormone progesterone is an endogenous cerebroprotective neurosteroid in both sexes.SIGNIFICANCE STATEMENT The brain responds to injury with protective signaling and has a remarkable capacity to protect itself. We show here that, in response to ischemic stroke, levels of progesterone and its neuroactive metabolite 5α-dihydroprogesterone are upregulated rapidly in the male mouse brain but not in the female brain. An important role of endogenous progesterone in cerebroprotection was demonstrated by the conditional inactivation of its receptor in neural cells. These results show the importance of endogenous progesterone, its metabolites, and neural progesterone receptors in acute cerebroprotection after stroke. This new concept could be exploited therapeutically by taking into account the progesterone status of patients and by supplementing and reinforcing endogenous progesterone signaling for attaining its full cerebroprotective potential.


Assuntos
Neurônios , Progesterona/genética , Receptores de Progesterona/genética , Acidente Vascular Cerebral/genética , Acidente Vascular Cerebral/prevenção & controle , Envelhecimento , Animais , Química Encefálica/genética , Feminino , Deleção de Genes , Infarto da Artéria Cerebral Média/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores , Pregnenolona/metabolismo , Progesterona/metabolismo , Receptores de Progesterona/metabolismo , Caracteres Sexuais
7.
Biomolecules ; 14(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38672445

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal motoneuron degenerative disease that is associated with demyelination. The Wobbler (WR) mouse exhibits motoneuron degeneration, gliosis and myelin deterioration in the cervical spinal cord. Since male WRs display low testosterone (T) levels in the nervous system, we investigated if T modified myelin-relative parameters in WRs in the absence or presence of the aromatase inhibitor, anastrozole (A). We studied myelin by using luxol-fast-blue (LFB) staining, semithin sections, electron microscopy and myelin protein expression, density of IBA1+ microglia and mRNA expression of inflammatory factors, and the glutamatergic parameters glutamine synthetase (GS) and the transporter GLT1. Controls and WR + T showed higher LFB, MBP and PLP staining, lower g-ratios and compact myelin than WRs and WR + T + A, and groups showing the rupture of myelin lamellae. WRs showed increased IBA1+ cells and mRNA for CD11b and inflammatory factors (IL-18, TLR4, TNFαR1 and P2Y12R) vs. controls or WR + T. IBA1+ cells, and CD11b were not reduced in WR + T + A, but inflammatory factors' mRNA remained low. A reduction of GS+ cells and GLT-1 immunoreactivity was observed in WRs and WR + T + A vs. controls and WR + T. Clinically, WR + T but not WR + T + A showed enhanced muscle mass, grip strength and reduced paw abnormalities. Therefore, T effects involve myelin protection, a finding of potential clinical translation.


Assuntos
Esclerose Lateral Amiotrófica , Modelos Animais de Doenças , Bainha de Mielina , Testosterona , Animais , Camundongos , Bainha de Mielina/metabolismo , Bainha de Mielina/efeitos dos fármacos , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Masculino , Testosterona/farmacologia , Medula Espinal/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/patologia , Transportador 2 de Aminoácido Excitatório/metabolismo , Transportador 2 de Aminoácido Excitatório/genética , Microglia/efeitos dos fármacos , Microglia/metabolismo , Microglia/patologia
8.
JCI Insight ; 8(5)2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36729672

RESUMO

The main estrogen, 17ß-estradiol (E2), exerts several beneficial vascular actions through estrogen receptor α (ERα) in endothelial cells. However, the impact of other natural estrogens such as estriol (E3) and estetrol (E4) on arteries remains poorly described. In the present study, we report the effects of E3 and E4 on endothelial healing after carotid artery injuries in vivo. After endovascular injury, which preserves smooth muscle cells (SMCs), E2, E3, and E4 equally stimulated reendothelialization. By contrast, only E2 and E3 accelerated endothelial healing after perivascular injury that destroys both endothelial cells and SMCs, suggesting an important role of this latter cell type in E4's action, which was confirmed using Cre/lox mice inactivating ERα in SMCs. In addition, E4 mediated its effects independently of ERα membrane-initiated signaling, in contrast with E2. Consistently, RNA sequencing analysis revealed that transcriptomic and cellular signatures in response to E4 profoundly differed from those of E2. Thus, whereas acceleration of endothelial healing by estrogens had been viewed as entirely dependent on endothelial ERα, these results highlight the very specific pharmacological profile of the natural estrogen E4, revealing the importance of dialogue between SMCs and endothelial cells in its arterial protection.


Assuntos
Células Endoteliais , Estrogênios , Animais , Camundongos , Estrogênios/farmacologia , Receptor alfa de Estrogênio/genética , Estradiol/farmacologia , Artérias
9.
Endocrinology ; 164(1)2022 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-36306407

RESUMO

Ischemic stroke is a leading cause of disability and death, and aging is the main nonmodifiable risk factor. Following ischemia, neuroactive steroids have been shown to play a key role in cerebroprotection. Thus, brain steroid concentrations at the time of injury as well as their regulation after stroke are key factors to consider. Here, we investigated the effects of age and cerebral ischemia on steroid levels, behavioral outcomes, and neuronal degeneration in 3- and 18-month-old C57BL/6JRj male mice. Ischemia was induced by middle cerebral artery occlusion for 1 hour followed by reperfusion (MCAO/R) and analyses were performed at 6 hours after MCAO. Extended steroid profiles established by gas chromatography coupled with tandem mass spectrometry revealed that (1) brain and plasma concentrations of the main 5α-reduced metabolites of progesterone, 11-deoxycorticosterone, and corticosterone were lower in old than in young mice; (2) after MCAO/R, brain concentrations of progesterone, 5α-dihydroprogesterone, and corticosterone increased in young mice; and (3) after MCAO/R, brain concentrations of 5α-reduced metabolites of progesterone, 3α5α-tetrahydrodeoxycorticosterone, and 3ß5α-tetrahydrodeoxycorticosterone were lower in old than in young mice. After ischemia, old mice showed increased sensori-motor deficits and more degenerating neurons in the striatum than young mice. Altogether, these findings strongly suggest that the decreased capacity of old mice to metabolize steroids toward the 5α-reduction pathway comparatively to young mice may contribute to the worsening of their stroke outcomes.


Assuntos
Isquemia Encefálica , Neuroesteroides , Acidente Vascular Cerebral , Masculino , Animais , Camundongos , Progesterona , Camundongos Endogâmicos C57BL , Isquemia
10.
Endocr Rev ; 28(4): 387-439, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17431228

RESUMO

The utility and safety of postmenopausal hormone replacement therapy has recently been put into question by large clinical trials. Their outcome has been extensively commented upon, but discussions have mainly been limited to the effects of estrogens. In fact, progestagens are generally only considered with respect to their usefulness in preventing estrogen stimulation of uterine hyperplasia and malignancy. In addition, various risks have been attributed to progestagens and their omission from hormone replacement therapy has been considered, but this may underestimate their potential benefits and therapeutic promises. A major reason for the controversial reputation of progestagens is that they are generally considered as a single class. Moreover, the term progesterone is often used as a generic one for the different types of both natural and synthetic progestagens. This is not appropriate because natural progesterone has properties very distinct from the synthetic progestins. Within the nervous system, the neuroprotective and promyelinating effects of progesterone are promising, not only for preventing but also for reversing age-dependent changes and dysfunctions. There is indeed strong evidence that the aging nervous system remains at least to some extent sensitive to these beneficial effects of progesterone. The actions of progesterone in peripheral target tissues including breast, blood vessels, and bones are less well understood, but there is evidence for the beneficial effects of progesterone. The variety of signaling mechanisms of progesterone offers exciting possibilities for the development of more selective, efficient, and safe progestagens. The recognition that progesterone is synthesized by neurons and glial cells requires a reevaluation of hormonal aging.


Assuntos
Terapia de Reposição de Estrogênios/métodos , Fenômenos Fisiológicos do Sistema Nervoso , Congêneres da Progesterona/uso terapêutico , Progesterona/uso terapêutico , Progestinas/uso terapêutico , Envelhecimento/fisiologia , Animais , Feminino , Humanos , Neuroglia/efeitos dos fármacos , Neuroglia/fisiologia , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Progesterona/farmacologia , Congêneres da Progesterona/farmacologia , Progestinas/farmacologia
11.
Neuropharmacology ; 198: 108760, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34437904

RESUMO

Our previous studies showed that intranasal delivery of progesterone offers a good bioavailability and neuroprotective efficacy after experimental stroke. We have also demonstrated that progesterone receptors (PR) are essential for cerebroprotection by endogenous progesterone and by progesterone treatment. The identification of PR as a potential drug target for stroke therapy opens new therapeutic indications for selective synthetic progestins. Nestorone® (16-methylene-17α-acetoxy-19-nor-pregn-4-ene-3, 20-dione, also known as segesterone acetate) is a 19-norprogesterone derivative that more potently targets PR than progesterone. The objective of this study was to evaluate the cerebroprotective efficiency of intranasal administration of Nestorone after middle cerebral occlusion (MCAO) in mice. We show here that intranasal administration is a very efficient route to achieve a preferential delivery of Nestorone to the brain and confers a slow elimination and a sustained bioavailability. Furthermore, intranasal administration of Nestorone (at 0.08 mg/kg) improved the functional outcomes and decreased the ischemic lesion in male but not in female mice at 48 h post MCAO. Use of PRNesCre mice, selectively lacking expression of PR in neural cells, and their control PRloxP/loxP littermates showed that the cerebroprotective effects of Nestorone in male mice depended on neural PR as they were not observed in PRNesCre mice. Our findings show that intranasal delivery of Nestorone may be an efficient strategy to promote recovery after stroke in males and confirm the key role of PR in cerebroprotection. Furthermore, they point to sex differences in the response to Nestorone treatment and emphasize the necessity to include males and females in experimental studies.


Assuntos
AVC Isquêmico/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Fármacos Neuroprotetores/uso terapêutico , Norprogesteronas/administração & dosagem , Norprogesteronas/uso terapêutico , Administração Intranasal , Animais , Comportamento Animal/efeitos dos fármacos , Encéfalo/metabolismo , Feminino , Infarto da Artéria Cerebral Média/prevenção & controle , Injeções Intraperitoneais , AVC Isquêmico/psicologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fármacos Neuroprotetores/farmacocinética , Norprogesteronas/farmacocinética , Receptores de Progesterona/antagonistas & inibidores , Caracteres Sexuais , Resultado do Tratamento
12.
J Steroid Biochem Mol Biol ; 207: 105820, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33465418

RESUMO

Progesterone is involved in dendritogenesis, synaptogenesis and maturation of cerebellar Purkinge cells, major sites of steroid synthesis in the brain. To study a possible time-relationship between myelination, neurosteroidogenesis and steroid receptors during development of the postnatal mouse cerebellum, we determined at postnatal days 5 (P5),18 (P18) and 35 (P35) the expression of myelin basic protein (MBP), components of the steroidogenic pathway, levels of endogenous steroids and progesterone's classical and non-classical receptors. In parallel with myelin increased expression during development, P18 and P35 mice showed higher levels of cerebellar progesterone and its reduced derivatives, higher expression of steroidogenic acute regulatory protein (StAR) mRNA, cholesterol side chain cleavage enzyme (P450scc) and 5α-reductase mRNA vs. P5 mice. Other steroids such as corticosterone and its reduced derivatives and 3ß-androstanodiol (ADIOL) showed a peak increase at P18 compared to P5. Progesterone membrane receptors and binding proteins (PGRMC1, mPRα, mPRß, mPRγ, and Sigma1 receptors) mRNAs levels increased during development while that of classical progesterone receptors (PR) remained invariable. PRKO mice showed similar MBP levels than wild type. Thus, these data suggests that progesterone and its neuroactive metabolites may play a role in postnatal cerebellar myelination.


Assuntos
Cerebelo/metabolismo , Proteína Básica da Mielina/genética , Fosfoproteínas/genética , Progesterona/genética , Animais , Cerebelo/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Camundongos , Progesterona/biossíntese , Ligação Proteica/genética , RNA Mensageiro/genética
13.
Mol Neurobiol ; 58(5): 2088-2106, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33411236

RESUMO

Patients suffering of amyotrophic lateral sclerosis (ALS) present motoneuron degeneration leading to muscle atrophy, dysphagia, and dysarthria. The Wobbler mouse, an animal model of ALS, shows a selective loss of motoneurons, astrocytosis, and microgliosis in the spinal cord. The incidence of ALS is greater in men; however, it increases in women after menopause, suggesting a role of sex steroids in ALS. Testosterone is a complex steroid that exerts its effects directly via androgen (AR) or Sigma-1 receptors and indirectly via estrogen receptors (ER) after aromatization into estradiol. Its reduced-metabolite 5α-dihydrotestosterone acts via AR. This study analyzed the effects of testosterone in male symptomatic Wobblers. Controls or Wobblers received empty or testosterone-filled silastic tubes for 2 months. The cervical spinal cord from testosterone-treated Wobblers showed (1) similar androgen levels to untreated control and (2) increased levels of testosterone, and its 5α-reduced metabolites, 5α- dihydrotestosterone, and 3ß-androstanediol, but (3) undetectable levels of estradiol compared to untreated Wobblers. Testosterone-treated controls showed comparable steroid concentrations to its untreated counterpart. In testosterone- treated Wobblers a reduction of AR, ERα, and aromatase and high levels of Sigma-1 receptor mRNAs was demonstrated. Testosterone treatment increased ChAT immunoreactivity and the antiinflammatory mediator TGFß, while it lessened vacuolated motoneurons, GFAP+ astrogliosis, the density of IBA1+ microgliosis, proinflammatory mediators, and oxidative/nitrosative stress. Clinically, testosterone treatment in Wobblers slowed the progression of paw atrophy and improved rotarod performance. Collectively, our findings indicate an antiinflammatory and protective effect of testosterone in the degenerating spinal cord. These results coincided with a high concentration of androgen-reduced derivatives after testosterone treatment suggesting that the steroid profile may have a beneficial role on disease progression.


Assuntos
Esclerose Lateral Amiotrófica/tratamento farmacológico , Neurônios Motores/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Testosterona/uso terapêutico , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/patologia , Animais , Aromatase/metabolismo , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Modelos Animais de Doenças , Receptor alfa de Estrogênio/metabolismo , Masculino , Camundongos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Fármacos Neuroprotetores/farmacologia , Receptores Androgênicos/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Medula Espinal/patologia , Testosterona/metabolismo , Testosterona/farmacologia , Resultado do Tratamento
14.
Front Neuroendocrinol ; 30(2): 173-87, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19318112

RESUMO

Studies on the neuroprotective and promyelinating effects of progesterone in the nervous system are of great interest due to their potential clinical connotations. In peripheral neuropathies, progesterone and reduced derivatives promote remyelination, axonal regeneration and the recovery of function. In traumatic brain injury (TBI), progesterone has the ability to reduce edema and inflammatory cytokines, prevent neuronal loss and improve functional outcomes. Clinical trials have shown that short-and long-term progesterone treatment induces a significant improvement in the level of disability among patients with brain injury. In experimental spinal cord injury (SCI), molecular markers of functional motoneurons become impaired, including brain-derived neurotrophic factor (BDNF) mRNA, Na,K-ATPase mRNA, microtubule-associated protein 2 and choline acetyltransferase (ChAT). SCI also produces motoneuron chromatolysis. Progesterone treatment restores the expression of these molecules while chromatolysis subsided. SCI also causes oligodendrocyte loss and demyelination. In this case, a short progesterone treatment enhances proliferation and differentiation of oligodendrocyte progenitors into mature myelin-producing cells, whereas prolonged treatment increases a transcription factor (Olig1) needed to repair injury-induced demyelination. Progesterone neuroprotection has also been shown in motoneuron neurodegeneration. In Wobbler mice spinal cord, progesterone reverses the impaired expression of BDNF, ChAT and Na,K-ATPase, prevents vacuolar motoneuron degeneration and the development of mitochondrial abnormalities, while functionally increases muscle strength and the survival of Wobbler mice. Multiple mechanisms contribute to these progesterone effects, and the role played by classical nuclear receptors, extra nuclear receptors, membrane receptors, and the reduced metabolites of progesterone in neuroprotection and myelin formation remain an exciting field worth of exploration.


Assuntos
Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Degeneração Neural , Fármacos Neuroprotetores , Traumatismos do Sistema Nervoso , Animais , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/patologia , Lesões Encefálicas/fisiopatologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Ensaios Clínicos como Assunto , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Mutantes Neurológicos , Neurônios Motores/citologia , Neurônios Motores/metabolismo , Bainha de Mielina/metabolismo , Degeneração Neural/tratamento farmacológico , Degeneração Neural/patologia , Degeneração Neural/fisiopatologia , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Oligodendroglia/citologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/metabolismo , Receptores de Progesterona/metabolismo , Fatores Sexuais , Traumatismos da Medula Espinal/tratamento farmacológico , Traumatismos da Medula Espinal/patologia , Traumatismos da Medula Espinal/fisiopatologia , Traumatismos do Sistema Nervoso/tratamento farmacológico , Traumatismos do Sistema Nervoso/patologia , Traumatismos do Sistema Nervoso/fisiopatologia
15.
Cell Mol Neurobiol ; 30(1): 123-35, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19693665

RESUMO

In the Wobbler mouse, a mutation in the Vps54 gene is accompanied by motoneuron degeneration and astrogliosis in the cervical spinal cord. Previous work has shown that these abnormalities are greatly attenuated by progesterone treatment of clinically afflicted Wobblers. However, whether progesterone is effective at all disease stages has not yet been tested. The present work used genotyped (wr/wr) Wobbler mice at three periods of the disease: early progressive (1-2 months), established (5-8 months) or late stages (12 months) and age-matched wildtype controls (NFR/NFR), half of which were implanted with a progesterone pellet (20 mg) for 18 days. In untreated Wobblers, degenerating vacuolated motoneurons were initially abundant, experienced a slight reduction at the established stage and dramatically diminished during the late period. In motoneurons, the cholinergic marker choline acetyltransferase (ChAT) was reduced at all stages of the Wobbler disease, whereas hyperexpression of the growth-associated protein (GAP43) mRNA preferentially occurred at the early progressive and established stages. Progesterone therapy significantly reduced motoneuron vacuolation, enhanced ChAT immunoreactive perikarya and reduced the hyperexpression of GAP43 during the early progressive and established stages. At all stage periods, untreated Wobblers showed high density of glial fibrillary acidic protein (GFAP)+ astrocytes and decreased number of glutamine synthase (GS) immunostained cells. Progesterone treatment down-regulated GFAP+ astrocytes and up-regulated GS+ cell number. These data reinforced the usefulness of progesterone to improve motoneuron and glial cell abnormalities of Wobbler mice and further showed that therapeutic benefit seems more effective at the early progressive and established periods, rather than on advance stages of spinal cord neurodegeneration.


Assuntos
Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Neuroglia/efeitos dos fármacos , Neuroglia/patologia , Progesterona/farmacologia , Doenças da Medula Espinal/patologia , Medula Espinal/patologia , Animais , Células do Corno Anterior/efeitos dos fármacos , Células do Corno Anterior/enzimologia , Células do Corno Anterior/patologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Astrócitos/patologia , Contagem de Células , Colina O-Acetiltransferase/metabolismo , Modelos Animais de Doenças , Feminino , Proteína GAP-43/genética , Proteína GAP-43/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Genótipo , Proteína Glial Fibrilar Ácida/metabolismo , Glutamato-Amônia Ligase/metabolismo , Processamento de Imagem Assistida por Computador , Masculino , Camundongos , Camundongos Mutantes Neurológicos , Neurônios Motores/enzimologia , Neuroglia/enzimologia , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Doenças da Medula Espinal/enzimologia
16.
Neuropharmacology ; 170: 108038, 2020 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-32151648

RESUMO

Intranasal administration is emerging as a very promising route to deliver therapeutics to the brain. We have recently shown that the intranasal delivery of progesterone at 8 mg/kg is neuroprotective after stroke in male mice. To explore the translational potential of intranasal progesterone treatment, we performed a dose-response study and analyzed outcomes at 48 h after middle cerebral artery occlusion (MCAO). The effects on functional outcomes at long-term were examined by using the optimal dose. In the first experiment, male C57BL/6JRj mice were treated with progesterone at 8, 16 or 24 mg/kg, or with placebo at 1, 6 and 24 h post-MCAO. Our results show that the dose of 8 mg/kg was optimal in counteracting the early histopathological impairments as well as in improving functional recovery. Steroid profiling in plasma showed that the dose of 8 mg/kg is the one that leads to sustained high levels of progesterone and its neuroactive metabolites. In the second experiment, the dose of 8 mg/kg was used and analyzes were performed at 2, 7 and 21 days post-MCAO. Progesterone increased survival, glycemia and body weight. Furthermore, progesterone decreased neurological deficits and improved performances of mice on the rotarod and pole as early as 2 days and up to 21 days post-MCAO. These findings show that intranasal administration of progesterone has a significant translational potential as a cerebroprotective treatment after stroke that can be effective to reduce mortality, to limit tissue and cell damage at the acute phase; and to confer a long-term functional recovery.


Assuntos
Isquemia Encefálica/tratamento farmacológico , Encéfalo/efeitos dos fármacos , Sistemas de Liberação de Medicamentos/métodos , AVC Isquêmico/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Progesterona/administração & dosagem , Administração Intranasal , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Isquemia Encefálica/sangue , Isquemia Encefálica/patologia , Relação Dose-Resposta a Droga , Géis , AVC Isquêmico/sangue , AVC Isquêmico/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fármacos Neuroprotetores/sangue , Progesterona/sangue
17.
Glia ; 57(8): 884-97, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19053058

RESUMO

Progesterone is emerging as a myelinizing factor for central nervous system injury. Successful remyelination requires proliferation and differentiation of oligodendrocyte precursor cells (OPC) into myelinating oligodendrocytes, but this process is incomplete following injury. To study progesterone actions on remyelination, we administered progesterone (16 mg/kg/day) to rats with complete spinal cord injury. Rats were euthanized 3 or 21 days after steroid treatment. Short progesterone treatment (a) increased the number of OPC without effect on the injury-induced reduction of mature oligodendrocytes, (b) increased mRNA and protein expression for the myelin basic protein (MBP) without effects on proteolipid protein (PLP) or myelin oligodendrocyte glycoprotein (MOG), and (c) increased the mRNA for Olig2 and Nkx2.2 transcription factors involved in specification and differentiation of the oligodendrocyte lineage. Furthermore, long progesterone treatment (a) reduced OPC with a concomitant increase of oligodendrocytes; (b) promoted differentiation of cells that incorporated bromodeoxyuridine, early after injury, into mature oligodendrocytes; (c) increased mRNA and protein expression of PLP without effects on MBP or MOG; and (d) increased mRNA for the Olig1 transcription factor involved in myelin repair. These results suggest that early progesterone treatment enhanced the density of OPC and induced their differentiation into mature oligodendrocytes by increasing the expression of Olig2 and Nkx2.2. Twenty-one days after injury, progesterone favors remyelination by increasing Olig1 (involved in repair of demyelinated lesions), PLP expression, and enhancing oligodendrocytes maturation. Thus, progesterone effects on oligodendrogenesis and myelin proteins may constitute fundamental steps for repairing traumatic injury inflicted to the spinal cord.


Assuntos
Células-Tronco Adultas/efeitos dos fármacos , Proteínas da Mielina/metabolismo , Oligodendroglia/efeitos dos fármacos , Progesterona/farmacologia , Progestinas/farmacologia , Traumatismos da Medula Espinal/metabolismo , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Modelos Animais de Doenças , Regulação da Expressão Gênica/efeitos dos fármacos , Proteína Homeobox Nkx-2.2 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Masculino , Proteínas da Mielina/genética , Proteína Proteolipídica de Mielina/genética , Proteína Proteolipídica de Mielina/metabolismo , Glicoproteína Associada a Mielina/genética , Glicoproteína Associada a Mielina/metabolismo , Glicoproteína Mielina-Oligodendrócito , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Orquiectomia/métodos , Progesterona/uso terapêutico , Progestinas/uso terapêutico , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/tratamento farmacológico , Fatores de Tempo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteínas de Peixe-Zebra
18.
Cell Mol Neurobiol ; 29(1): 27-39, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18584320

RESUMO

(1) Following acute spinal cord injury, progesterone modulates several molecules essential for motoneuron function, although the morphological substrates for these effects are unknown. (2) The present study analyzed morphological changes in motoneurons distal to the lesion site from rats with or without progesterone treatment. We employed electron microscopy to study changes in nucleus and cytoplasm and immunohistochemistry for the microtubule-associated protein 2 (MAP2) for changes in cytoskeleton. (3) After spinal cord injury, the nucleoplasm appeared more finely dispersed resulting in reduced electron opacity and the nucleus adopted an eccentric position. Changes of perikarya included dissolution of Nissl bodies and dissociation of polyribosomes (chromatolysis). After progesterone treatment for 3 days, the deafferented motoneurons now presented a clumped nucleoplasm, a better-preserved rough endoplasmic reticulum and absence of chromatolysis. Progesterone partially prevented development of nuclear eccentricity. Whereas 50% of injured motoneurons showed nuclear eccentricity, only 16% presented this phenotype after receiving progesterone. Additionally, injured rats showed reduced immunostaining for MAP2 in dendrites, pointing to cytoskeleton abnormalities, whereas progesterone treatment attenuated the injury-induced loss of MAP2. (4) Our data indicated that progesterone maintained in part neuronal ultrastructure, attenuated chromatolysis, and preclude the loss of MAP2, suggesting a protective effect during the early phases of spinal cord injury.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/ultraestrutura , Progesterona/farmacologia , Traumatismos da Medula Espinal/metabolismo , Traumatismos da Medula Espinal/patologia , Doença Aguda , Animais , Nucléolo Celular/efeitos dos fármacos , Nucléolo Celular/patologia , Nucléolo Celular/ultraestrutura , Imuno-Histoquímica , Masculino , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/patologia , Neurônios Motores/ultraestrutura , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
19.
J Steroid Biochem Mol Biol ; 185: 90-102, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30031789

RESUMO

Treatment with progesterone limits brain damage after stroke. However, the cellular bases of the cerebroprotective effects of progesterone are not well documented. The aims of this study were to determine neural cells and functions that are affected by progesterone treatment and the role of neural progesterone receptors (PR) after stroke. Adult male PRNesCre mice, selectively lacking PR in the central nervous system, and their control PRloxP/loxP littermates were subjected to transient ischemia by middle cerebral artery occlusion (MCAO) for 30 min. Mice received either progesterone (8 mg/kg) or vehicle at 1-, 6- and 24- hrs post-MCAO and outcomes were analyzed at 48 h post-MCAO. In PRloxP/loxP mice, progesterone exerted multiple effects on different neural cell types, improved motor functional outcomes and reduced total infarct volumes. In the peri-infarct, progesterone increased the density of neurons (NeuN+ cells), of cells of the oligodendroglial lineage (Olig2+ cells) and of oligodendrocyte progenitors (OP, NG2+ cells). Progesterone decreased the density of activated astrocytes (GFAP+ cells) and reactive microglia (Iba1+ cells) coexpressing the mannose receptor type 1 CD206 marker. Progesterone also reduced the expression of aquaporin 4 (AQP4), the water channel involved in both edema formation and resorption. The beneficial effects of progesterone were not observed in PRNesCre mice. Our findings show that progesterone treatment exerts beneficial effects on neurons, oligodendroglial cells and neuroinflammatory responses via PR. These findings demonstrate that progesterone is a pleiotropic cerebroprotective agent and that neural PR represent a therapeutic target for stroke cerebroprotection.


Assuntos
Hipóxia-Isquemia Encefálica/prevenção & controle , Microglia/citologia , Atividade Motora/efeitos dos fármacos , Fármacos Neuroprotetores/uso terapêutico , Oligodendroglia/citologia , Progesterona/uso terapêutico , Acidente Vascular Cerebral/tratamento farmacológico , Acidente Vascular Cerebral/patologia , Animais , Aquaporina 4/metabolismo , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Infarto da Artéria Cerebral Média/patologia , Lectinas Tipo C/metabolismo , Masculino , Receptor de Manose , Lectinas de Ligação a Manose/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/patologia , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/patologia , Receptores de Superfície Celular/metabolismo , Receptores de Progesterona/metabolismo
20.
Neuropharmacology ; 145(Pt B): 283-291, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29885423

RESUMO

Progesterone has been shown to be cerebroprotective in different experimental models of brain injuries and neurodegenerative diseases. The preclinical data provided great hope for its use in humans. The failure of Phase 3 clinical trials to demonstrate the cerebroprotective efficiency of progesterone in traumatic brain injury (TBI) patients emphasizes that different aspects of the design of both experimental and clinical studies should be reviewed and refined. One important aspect to consider is to test different routes of delivery of therapeutic agents. Several studies have shown that the intranasal delivery of drugs could be used in different experimental models of central nervous system diseases. In this review, we will summarize the pharmacokinetic characteristics and practical advantages of intranasal delivery of progesterone. A special emphasis will be placed on describing and discussing our recent findings showing that intranasal delivery of progesterone after transient focal cerebral ischemia: 1) improved motor functions; 2) reduced infarct volume, neuronal loss, blood brain barrier disruption; and 3) reduced brain mitochondrial dysfunctions. Our data suggest that intranasal delivery of progesterone is a potential efficient, safe and non-stressful mode of administration that warrants evaluation for cerebroprotection in patients with brain injuries. This article is part of the Special Issue entitled "Novel Treatments for Traumatic Brain Injury".


Assuntos
Lesões Encefálicas/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Progesterona/administração & dosagem , Administração Intranasal , Animais , Humanos , Fármacos Neuroprotetores/farmacocinética , Progesterona/farmacocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA