Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Hepatology ; 73(4): 1531-1550, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-32558958

RESUMO

BACKGROUND AND AIMS: Small-molecule flux in tissue microdomains is essential for organ function, but knowledge of this process is scant due to the lack of suitable methods. We developed two independent techniques that allow the quantification of advection (flow) and diffusion in individual bile canaliculi and in interlobular bile ducts of intact livers in living mice, namely fluorescence loss after photoactivation and intravital arbitrary region image correlation spectroscopy. APPROACH AND RESULTS: The results challenge the prevailing "mechano-osmotic" theory of canalicular bile flow. After active transport across hepatocyte membranes, bile acids are transported in the canaliculi primarily by diffusion. Only in the interlobular ducts is diffusion augmented by regulatable advection. Photoactivation of fluorescein bis-(5-carboxymethoxy-2-nitrobenzyl)-ether in entire lobules demonstrated the establishment of diffusive gradients in the bile canalicular network and the sink function of interlobular ducts. In contrast to the bile canalicular network, vectorial transport was detected and quantified in the mesh of interlobular bile ducts. CONCLUSIONS: The liver consists of a diffusion-dominated canalicular domain, where hepatocytes secrete small molecules and generate a concentration gradient and a flow-augmented ductular domain, where regulated water influx creates unidirectional advection that augments the diffusive flux.


Assuntos
Canalículos Biliares/diagnóstico por imagem , Canalículos Biliares/metabolismo , Transporte Biológico Ativo/fisiologia , Microscopia Intravital/métodos , Veia Porta/diagnóstico por imagem , Veia Porta/metabolismo , Animais , Bile/metabolismo , Ácidos e Sais Biliares/metabolismo , Membrana Celular/metabolismo , Simulação por Computador , Corantes Fluorescentes/administração & dosagem , Hepatócitos/metabolismo , Injeções Intravenosas/métodos , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal/métodos , Microscopia de Fluorescência/métodos
2.
Arch Toxicol ; 95(8): 2785-2796, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34185104

RESUMO

Pyrrolizidine alkaloids (PAs) are secondary plant metabolites synthesized by a wide range of plants as protection against herbivores. These toxins are found worldwide and pose a threat to human health. PAs induce acute effects like hepatic sinusoidal obstruction syndrome and pulmonary arterial hypertension. Moreover, chronic exposure to low doses can induce cancer and liver cirrhosis in laboratory animals. The mechanisms causing hepatotoxicity have been investigated previously. However, toxic effects in the lung are less well understood, and especially data on the correlation effects with individual chemical structures of different PAs are lacking. The present study focuses on the identification of gene expression changes in vivo in rat lungs after exposure to six structurally different PAs (echimidine, heliotrine, lasiocarpine, senecionine, senkirkine, and platyphylline). Rats were treated by gavage with daily doses of 3.3 mg PA/kg bodyweight for 28 days and transcriptional changes in the lung and kidney were investigated by whole-genome microarray analysis. The results were compared with recently published data on gene regulation in the liver. Using bioinformatics data mining, we identified inflammatory responses as a predominant feature in rat lungs. By comparison, in liver, early molecular consequences to PAs were characterized by alterations in cell-cycle regulation and DNA damage response. Our results provide, for the first time, information about early molecular effects in lung tissue after subacute exposure to PAs, and demonstrates tissue-specificity of PA-induced molecular effects.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/etiologia , Inflamação/induzido quimicamente , Pulmão/efeitos dos fármacos , Alcaloides de Pirrolizidina/toxicidade , Animais , Ciclo Celular/efeitos dos fármacos , Doença Hepática Induzida por Substâncias e Drogas/patologia , Dano ao DNA/efeitos dos fármacos , Mineração de Dados , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/genética , Inflamação/patologia , Pulmão/patologia , Masculino , Análise em Microsséries , Alcaloides de Pirrolizidina/administração & dosagem , Alcaloides de Pirrolizidina/química , Ratos , Ratos Endogâmicos F344 , Transcriptoma
3.
Hepatology ; 69(2): 666-683, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30102412

RESUMO

Bile duct ligation (BDL) is an experimental procedure that mimics obstructive cholestatic disease. One of the early consequences of BDL in rodents is the appearance of so-called bile infarcts that correspond to Charcot-Gombault necrosis in human cholestasis. The mechanisms causing bile infarcts and their pathophysiological relevance are unclear. Therefore, intravital two photon-based imaging of BDL mice was performed with fluorescent bile salts (BS) and non-BS organic anion analogues. Key findings were followed up by matrix-assisted laser desorption ionization imaging, clinical chemistry, immunostaining, and gene expression analyses. In the acute phase, 1-3 days after BDL, BS concentrations in bile increased and single-cell bile microinfarcts occurred in dispersed hepatocytes throughout the liver caused by the rupture of the apical hepatocyte membrane. This rupture occurred after loss of mitochondrial membrane potential, followed by entry of bile, cell death, and a "domino effect" of further death events of neighboring hepatocytes. Bile infarcts provided a trans-epithelial shunt between bile canaliculi and sinusoids by which bile constituents leaked into blood. In the chronic phase, ≥21 days after BDL, uptake of BS tracers at the sinusoidal hepatocyte membrane was reduced. This contributes to elevated concentrations of BS in blood and decreased concentrations in the biliary tract. Conclusion: Bile microinfarcts occur in the acute phase after BDL in a limited number of dispersed hepatocytes followed by larger infarcts involving neighboring hepatocytes, and they allow leakage of bile from the BS-overloaded biliary tract into blood, thereby protecting the liver from BS toxicity; in the chronic phase after BDL, reduced sinusoidal BS uptake is a dominant protective factor, and the kidney contributes to the elimination of BS until cholemic nephropathy sets in.


Assuntos
Canalículos Biliares/fisiopatologia , Colestase/fisiopatologia , Modelos Animais de Doenças , Hepatócitos/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/genética , Animais , Ácidos e Sais Biliares/sangue , Colestase/diagnóstico por imagem , Colestase/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Imagem Óptica , Membro 4 da Subfamília B de Transportadores de Cassetes de Ligação de ATP
4.
Arch Toxicol ; 94(1): 219-229, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31606820

RESUMO

Pyrrolizidine alkaloids (PAs) are widely occurring phytotoxins which can induce severe liver damage in humans and other mammalian species by mechanisms that are not fully understood. Therefore, we investigated the development of PA hepatotoxicity in vivo, using an acutely toxic dose of the PA senecionine in mice, in combination with intravital two-photon microscopy, histology, clinical chemistry, and in vitro experiments with primary mouse hepatocytes and liver sinusoidal endothelial cells (LSECs). We observed pericentral LSEC necrosis together with elevated sinusoidal marker proteins in the serum of senecionine-treated mice and increased sinusoidal platelet aggregation in the damaged tissue regions. In vitro experiments showed no cytotoxicity to freshly isolated LSECs up to 500 µM senecionine. However, metabolic activation of senecionine by preincubation with primary mouse hepatocytes increased the cytotoxicity to cultivated LSECs with an EC50 of approximately 22 µM. The cytochrome P450 (CYP)-dependency of senecionine bioactivation was confirmed in CYP reductase-deficient mice where no PA-induced hepatotoxicity was observed. Therefore, toxic metabolites of senecionine are generated by hepatic CYPs, and may be partially released from hepatocytes leading to destruction of LSECs in the pericentral region of the liver lobules. Analysis of hepatic bile salt transport by intravital two-photon imaging revealed a delayed uptake of a fluorescent bile salt analogue from the hepatic sinusoids into hepatocytes and delayed elimination. This was accompanied by transcriptional deregulation of hepatic bile salt transporters like Abcb11 or Abcc1. In conclusion, senecionine destroys LSECs although the toxic metabolite is formed in a CYP-dependent manner in the adjacent pericentral hepatocytes.


Assuntos
Colestase/induzido quimicamente , Sistema Enzimático do Citocromo P-450/metabolismo , Fígado/citologia , Alcaloides de Pirrolizidina/toxicidade , Animais , Células Cultivadas , Colestase/patologia , Sistema Enzimático do Citocromo P-450/genética , Células Endoteliais/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Necrose/induzido quimicamente , Agregação Plaquetária/efeitos dos fármacos , Alcaloides de Pirrolizidina/farmacocinética , Testes de Toxicidade/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA