Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 56(7): 944-956, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28121131

RESUMO

Calmodulin (CaM) is a cytosolic Ca2+-binding protein that serves as a control element for many enzymes. It consists of two globular domains, each containing two EF hand pairs capable of binding Ca2+, joined by a flexible central linker region. CaM is able to bind and activate its target proteins in the Ca2+-replete and Ca2+-deplete forms. To study the Ca2+-dependent/independent properties of binding and activation of target proteins by CaM, CaM constructs with Ca2+-binding disrupting mutations of Asp to Ala at position one of each EF hand have been used. These CaM mutant proteins are deficient in binding Ca2+ in either the N-lobe EF hands (CaM12), C-lobe EF hands (CaM34), or all four EF hands (CaM1234). To investigate potential structural changes these mutations may cause, we performed detailed NMR studies of CaM12, CaM34, and CaM1234 including determining the solution structure of CaM1234. We then investigated if these CaM mutants affected the interaction of CaM with a target protein known to interact with apoCaM by determining the solution structure of CaM34 bound to the iNOS CaM binding domain peptide. The structures provide direct structural evidence of changes that are present in these Ca2+-deficient CaM mutants and show these mutations increase the hydrophobic exposed surface and decrease the electronegative surface potential throughout each lobe of CaM. These Ca2+-deficient CaM mutants may not be a true representation of apoCaM and may not allow for native-like interactions of apoCaM with its target proteins.


Assuntos
Calmodulina/química , Calmodulina/metabolismo , Motivos EF Hand , Mutação , Sítios de Ligação , Cálcio/metabolismo , Calmodulina/genética , Interações Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Óxido Nítrico Sintase Tipo II/química , Óxido Nítrico Sintase Tipo II/metabolismo , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Eletricidade Estática , Ressonância de Plasmônio de Superfície
2.
Biochemistry ; 55(42): 5962-5971, 2016 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-27696828

RESUMO

The small acidic protein calmodulin (CaM) serves as a Ca2+ sensor and control element for many enzymes including nitric oxide synthase (NOS) enzymes that play major roles in key physiological and pathological processes. CaM binding causes a conformational change in NOS to allow for the electron transfer between the reductase and oxygenase domains through a process that is thought to be highly dynamic. In this report, NMR spectroscopy was used to determine the solution structure of the endothelial NOS (eNOS) peptide in complex with CaM at the lowest Ca2+ concentration (225 nM) required for CaM to bind to eNOS and corresponds to a physiological elevated Ca2+ level found in mammalian cells. Under these conditions, the CaM-eNOS complex has a Ca2+-replete C-terminal lobe bound to the eNOS peptide and a Ca2+ free N-terminal lobe loosely associated with the eNOS peptide. With increasing Ca2+ concentration, the binding of Ca2+ by the N-lobe of CaM results in a stronger interaction with the C-terminal region of the eNOS peptide and increased α-helical structure of the peptide that may be part of the mechanism resulting in electron transfer from the FMN to the heme in the oxygenase domain of the enzyme. Surface plasmon resonance studies performed under the same conditions show Ca2+ concentration-dependent binding kinetics were consistent with the NMR structural results. This investigation shows that structural studies performed under more physiological relevant conditions provide information on subtle changes in structure that may not be apparent when experiments are performed in excess Ca2+ concentrations.

3.
Biochemistry ; 54(11): 1989-2000, 2015 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-25751535

RESUMO

The intracellular Ca²âº concentration is an important regulator of many cellular functions. The small acidic protein calmodulin (CaM) serves as a Ca²âº sensor and control element for many enzymes. Nitric oxide synthase (NOS) is one of the proteins that is activated by CaM and plays a major role in a number of key physiological and pathological processes. Previous studies have shown CaM to act like a switch that causes a conformational change in NOS to allow for the electron transfer between the reductase and oxygenase domains through a process that is thought to be highly dynamic. We have analyzed the structure and dynamics of complexes formed by peptides based on inducible NOS (iNOS) and endothelial NOS (eNOS) with CaM at Ca²âº concentrations that mimic the physiological basal (17 and 100 nM) and elevated levels (225 nM) found in mammalian cells using fluorescence techniques and nuclear magnetic resonance spectroscopy. The results show the CaM-NOS complexes have similar structures at physiological and fully saturated Ca²âº levels; however, their dynamics are remarkably different. At 225 nM Ca²âº, the CaM-NOS complexes show overall an increase in backbone dynamics, when compared to the dynamics of the complexes at saturating Ca²âº concentrations. Specifically, the N-lobe of CaM in the CaM-iNOS complex displays a lower internal mobility (higher S²) and higher exchange protection compared to those of the CaM-eNOS complex. In contrast, the C-lobe of CaM in the CaM-eNOS complex is less dynamic. These results illustrate that structures of CaM-NOS complexes determined at saturated Ca²âº concentrations cannot provide a complete picture because the differences in intramolecular dynamics become visible only at physiological Ca²âº levels.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Modelos Moleculares , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Sinalização do Cálcio , Calmodulina/química , Calmodulina/genética , Compostos de Dansil/química , Medição da Troca de Deutério , Ativação Enzimática , Corantes Fluorescentes/química , Humanos , Óxido Nítrico Sintase Tipo II/química , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo III/química , Óxido Nítrico Sintase Tipo III/genética , Ressonância Magnética Nuclear Biomolecular , Concentração Osmolar , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Desdobramento de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência
4.
Biochemistry ; 53(8): 1241-9, 2014 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-24495081

RESUMO

Nitric oxide synthase (NOS) plays a major role in a number of key physiological and pathological processes, and it is important to understand how this enzyme is regulated. The small acidic calcium binding protein, calmodulin (CaM), is required to fully activate the enzyme. The exact mechanism of how CaM activates NOS is not fully understood at this time. Studies have shown CaM to act like a switch that causes a conformational change in NOS to allow for the transfer of an electron between the reductase and oxygenase domains through a process that is thought to be highly dynamic and at least in part controlled by several possible phosphorylation sites. We have determined the solution structure of CaM bound to a peptide that contains a phosphorylated threonine corresponding to Thr495 in full size endothelial NOS (eNOS) to investigate the structural and functional effects that the phosphorylation of this residue may have on nitric oxide production. Our biophysical studies show that phosphorylation of Thr495 introduces electrostatic repulsions between the target sequence and CaM as well as a diminished propensity for the peptide to form an α-helix. The calcium affinity of the CaM-target peptide complex is reduced because of phosphorylation, and this leads to weaker binding at low physiological calcium concentrations. This study provides an explanation for the reduced level of NO production by eNOS carrying a phosphorylated Thr495 residue.


Assuntos
Calmodulina/química , Calmodulina/metabolismo , Óxido Nítrico Sintase Tipo III/química , Óxido Nítrico Sintase Tipo III/metabolismo , Fragmentos de Peptídeos/metabolismo , Fosfopeptídeos/metabolismo , Treonina/metabolismo , Sequência de Aminoácidos , Cálcio/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Fragmentos de Peptídeos/química , Fosfopeptídeos/química , Fosforilação , Ligação Proteica , Estrutura Secundária de Proteína , Soluções , Eletricidade Estática
5.
J Phys Chem A ; 118(34): 6864-72, 2014 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-25046446

RESUMO

The binding of calmodulin (CaM) to neuronal nitric oxide synthase (nNOS) enables formation of the output state of nNOS for nitric oxide production. Essential to NOS function is the geometry and dynamics of CaM docking to the NOS oxygenase domain, but little is known about these details. In the present work, the domain docking in a CaM-bound oxygenase/FMN (oxyFMN) construct of nNOS was investigated using the relaxation-induced dipolar modulation enhancement (RIDME) technique, which is a pulsed electron paramagnetic resonance technique sensitive to the magnetic dipole interaction between the electron spins. A cysteine was introduced at position 110 of CaM, after which a nitroxide spin label was attached at the position. The RIDME study of the magnetic dipole interaction between the spin label and the ferric heme centers in the oxygenase domain of nNOS revealed that, with increasing [Ca(2+)], the concentration of nNOS·CaM complexes increases and reaches a maximum at [Ca(2+)]/[CaM] ≥ 4. The RIDME kinetics of CaM-bound nNOS represented monotonous decays without well-defined oscillations. The analysis of these kinetics based on the structural models for the open and docked states has shown that only about 15 ± 3% of the CaM-bound nNOS is in the docked state at any given time, while the remaining 85 ± 3% of the protein is in the open conformations characterized by a wide distribution of distances between the bound CaM and the oxygenase domain. The results of this investigation are consistent with a model that the Ca(2+)-CaM interaction causes CaM docking with the oxygenase domain. The low population of the docked state indicates that the CaM-controlled docking between the FMN and heme domains is highly dynamic.


Assuntos
Calmodulina/química , Óxido Nítrico Sintase Tipo I/química , Animais , Cálcio/química , Calmodulina/genética , Simulação por Computador , Cisteína/química , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Escherichia coli , Heme/química , Cinética , Fenômenos Magnéticos , Modelos Moleculares , Óxido Nítrico Sintase Tipo I/genética , Ratos , Marcadores de Spin , Transfecção
6.
Phys Rev Lett ; 110(17): 176801, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23679754

RESUMO

The quantum Hall effect is observed in a two-dimensional electron gas formed in millimeter-scale hydrogenated graphene, with a mobility less than 10 cm2/V·s and corresponding Ioffe-Regel disorder parameter (k(F)λ)(-1) ≫ 1. In a zero magnetic field and low temperatures, the hydrogenated graphene is insulating with a two-point resistance of the order of 250h/e2. The application of a strong magnetic field generates a negative colossal magnetoresistance, with the two-point resistance saturating within 0.5% of h/2e2 at 45 T. Our observations are consistent with the opening of an impurity-induced gap in the density of states of graphene. The interplay between electron localization by defect scattering and magnetic confinement in two-dimensional atomic crystals is discussed.

7.
Biochemistry ; 51(17): 3651-61, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22486744

RESUMO

Nitric oxide synthase (NOS) plays a major role in a number of key physiological and pathological processes. Knowledge of how this is regulated is important. The small acidic calcium binding protein, calmodulin (CaM), is required to fully activate the enzyme. The exact mechanism of how CaM activates NOS is not fully understood. Studies have shown CaM to act like a switch that causes a conformational change in NOS to allow for the transfer of an electron between the reductase and oxygenase domains through a process that is thought to be highly dynamic. To investigate the dynamic properties of CaM-NOS interactions, we determined the solution structure of CaM bound to the inducible NOS (iNOS) and endothelial NOS (eNOS) CaM binding region peptides. In addition, we investigated the effect of CaM phosphorylation. Tyrosine 99 (Y99) of CaM is reported to be phosphorylated in vivo. We have produced a phosphomimetic Y99E CaM to investigate the structural and functional effects that the phosphorylation of this residue may have on nitric oxide production. All three mammalian NOS isoforms were included in the investigation. Our results show that a phosphomimetic Y99E CaM significantly reduces the maximal synthase activity of eNOS by 40% while having little effect on nNOS or iNOS activity. A comparative nuclear magnetic resonance study between phosphomimetic Y99E CaM and wild-type CaM bound to the eNOS CaM binding region peptide was performed. This investigation provides important insights into how the increased electronegativity of a phosphorylated CaM protein affects the binding, dynamics, and activation of the NOS enzymes.


Assuntos
Calmodulina/genética , Calmodulina/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Animais , Calmodulina/química , Humanos , Espectroscopia de Ressonância Magnética , Camundongos , Simulação de Dinâmica Molecular , Mimetismo Molecular/genética , Óxido Nítrico Sintase Tipo I/química , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo II/química , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo III/antagonistas & inibidores , Óxido Nítrico Sintase Tipo III/química , Óxido Nítrico Sintase Tipo III/genética , Fragmentos de Peptídeos/antagonistas & inibidores , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/metabolismo , Fosforilação/genética , Ligação Proteica/genética , Ratos , Relação Estrutura-Atividade
8.
Biochim Biophys Acta ; 1814(12): 1997-2002, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21864726

RESUMO

Intraprotein electron transfer (IET) from flavin mononucleotide (FMN) to heme is an essential step in nitric oxide (NO) synthesis by NO synthase (NOS). The IET kinetics in neuronal and inducible NOS (nNOS and iNOS) holoenzymes have been previously determined in our laboratories by laser flash photolysis [reviewed in: C.J. Feng, G. Tollin, Dalton Trans., (2009) 6692-6700]. Here we report the kinetics of the IET in a bovine endothelial NOS (eNOS) holoenzyme in the presence and absence of added calmodulin (CaM). The IET rate constant in the presence of CaM is estimated to be ~4.3s(-1). No IET was observed in the absence of CaM, indicating that CaM is the primary factor in controlling the FMN-heme IET in the eNOS enzyme. The IET rate constant value for the eNOS holoenzyme is approximately 10 times smaller than those obtained for the iNOS and CaM-bound nNOS holoenzymes. Possible mechanisms underlying the difference in IET kinetics among the NOS isoforms are discussed. Because the rate-limiting step in the IET process in these enzymes is the conformational change from input state to output state, a slower conformational change (than in the other isoforms) is most likely to cause the slower IET in eNOS.


Assuntos
Transporte de Elétrons/fisiologia , Mononucleotídeo de Flavina/química , Heme/química , Óxido Nítrico Sintase Tipo III/química , Óxido Nítrico Sintase Tipo III/metabolismo , Animais , Bovinos , Mononucleotídeo de Flavina/metabolismo , Heme/metabolismo , Holoenzimas/química , Holoenzimas/metabolismo , Holoenzimas/efeitos da radiação , Isoenzimas/química , Isoenzimas/metabolismo , Modelos Biológicos , Óxido Nítrico Sintase Tipo III/efeitos da radiação , Processos Fotoquímicos , Fotólise , Estrutura Terciária de Proteína/fisiologia , Espectroscopia por Absorção de Raios X
9.
J Biol Inorg Chem ; 17(5): 675-85, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22407542

RESUMO

In the crystal structure of a calmodulin (CaM)-bound FMN domain of human inducible nitric oxide synthase (NOS), the CaM-binding region together with CaM forms a hinge, and pivots on an R536(NOS)/E47(CaM) pair (Xia et al. J Biol Chem 284:30708-30717, 2009). Notably, isoform-specific human inducible NOS S562 and C563 residues form hydrogen bonds with the R536 residue through their backbone oxygens. In this study, we investigated the roles of the S562 and C563 residues in the NOS FMN-heme interdomain electron transfer (IET), the rates of which can be used to probe the interdomain FMN/heme alignment. Human inducible NOS S562K and C563R mutants of an oxygenase/FMN (oxyFMN) construct were made by introducing charged residues at these sites as found in human neuronal NOS and endothelial NOS isoforms, respectively. The IET rate constant of the S562K mutant is notably decreased by one third, and its flavin fluorescence intensity per micromole per liter is diminished by approximately 24 %. These results suggest that a positive charge at position 562 destabilizes the hydrogen-bond-mediated NOS/CaM alignment, resulting in slower FMN-heme IET in the mutant. On the other hand, the IET rate constant of the C563R mutant is similar to that of the wild-type, indicating that the mutational effect is site-specific. Moreover, the human inducible NOS oxyFMN R536E mutant was constructed to disrupt the bridging CaM/NOS interaction, and its FMN-heme IET rate was decreased by 96 %. These results demonstrated a new role of the isoform-specific serine residue of the key CaM/FMN(NOS) bridging site in regulating the FMN-heme IET (possibly by tuning the alignment of the FMN and heme domains).


Assuntos
Heme/metabolismo , Óxido Nítrico Sintase Tipo II/química , Óxido Nítrico Sintase Tipo II/metabolismo , Isoformas de Proteínas/metabolismo , Sequência de Aminoácidos , Calmodulina/química , Calmodulina/metabolismo , Transporte de Elétrons , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/metabolismo , Heme/química , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Óxido Nítrico Sintase Tipo II/genética , Isoformas de Proteínas/química , Alinhamento de Sequência , Espectrometria de Fluorescência
10.
J Phys Chem A ; 116(25): 6731-9, 2012 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-22667467

RESUMO

Mammalian nitric oxide synthases (NOSs) are enzymes responsible for oxidation of L-arginine (L-Arg) to nitric oxide (NO). Mechanisms of reactions at the catalytic heme site are not well understood, and it is of current interest to study structures of the heme species that activates O(2) and transforms the substrate. The NOS ferrous-NO complex is a close mimic of the obligatory ferric (hydro)peroxo intermediate in NOS catalysis. In this work, pulsed electron-nuclear double resonance (ENDOR) was used to probe the position of the l-Arg substrate at the NO(•)-coordinated ferrous heme center(s) in the oxygenase domain of rat neuronal NOS (nNOS). The analysis of (2)H and (15)N ENDOR spectra of samples containing d(7)- or guanidino-(15)N(2) labeled L-Arg has resulted in distance estimates for the nearby guanidino nitrogen and the nearby proton (deuteron) at C(δ). The L-Arg position was found to be noticeably different from that in the X-ray crystal structure of nNOS ferrous-NO complex [Li et al. J. Biol. Inorg. Chem.2006, 11, 753-768], with the nearby guanidino nitrogen being ~0.5 Šcloser to, and the nearby H(δ) about 1 Šfurther from, the NO ligand than in the X-ray structure. The difference might be related to the structural constraints imposed on the protein by the crystal. Importantly, in spite of its closer position, the guanidino nitrogen does not form a hydrogen bond with the NO ligand, as evidenced by the absence of significant isotropic hfi constant for N(g1). This is consistent with the previous reports that it is not the L-Arg substrate itself that would most likely serve as a direct proton donor to the diatomic ligands (NO and O(2)) bound to the heme.


Assuntos
Arginina/análise , Compostos Ferrosos/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico/metabolismo , Animais , Arginina/metabolismo , Biocatálise , Espectroscopia de Ressonância de Spin Eletrônica , Compostos Ferrosos/química , Modelos Moleculares , Óxido Nítrico/química , Óxido Nítrico Sintase Tipo I/química , Oxirredução , Ratos
11.
Protein Expr Purif ; 80(2): 224-33, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21763425

RESUMO

Fructose 1,6-bisphosphate (FBP) aldolase has been used as biocatalyst in the synthesis of several pharmaceutical compounds such as monosaccharides and analogs. Is has been suggested that microbial metal-dependant Class II aldolases could be better industrial catalysts than mammalian Class I enzyme because of their greater stability. The Class II aldolases from four microbes were subcloned into the Escherichia coli vector pT7-7, expressed and purified to near homogeneity. The kinetic parameters, temperature stability, pH profile, and tolerance to organic solvents of the Class II enzymes were determined, and compared with the properties of the Class I aldolase from rabbit muscle. Contrary to results obtained previously with the E. coli Class II aldolase, which was reported to be more stable than the mammalian enzyme, other recombinant Class II aldolases were found to be generally less stable than the Class I enzyme, especially in the presence of organic solvents. Class II aldolase from Bacillus cereus showed higher temperature stability than the other enzymes tested, but only the Mycobacterium tuberculosis Class II aldolase had a stability comparable to the Class I mammalian enzyme under assay conditions. The turnover number of the recombinant M. tuberculosis and Magnaporthe grisea Class II type A aldolases was comparable or higher than that of the Class I enzyme. The recombinant B. cereus and Pseudomonas aeruginosa Class II type B aldolases had very low turnover numbers and low metal content, indicating that the E. coli overexpression system may not be suitable for the Class II type B aldolases from these microorganisms.


Assuntos
Bacillus cereus/enzimologia , Frutose-Bifosfato Aldolase/metabolismo , Magnaporthe/enzimologia , Mycobacterium tuberculosis/enzimologia , Pseudomonas aeruginosa/enzimologia , Animais , Bacillus cereus/genética , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Cromatografia por Troca Iônica , Clonagem Molecular , Ativação Enzimática , Ensaios Enzimáticos , Escherichia coli/genética , Escherichia coli/metabolismo , Frutose-Bifosfato Aldolase/isolamento & purificação , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Genes Bacterianos , Glicerolfosfato Desidrogenase/metabolismo , Concentração de Íons de Hidrogênio , Magnaporthe/genética , Espectrometria de Massas , Peso Molecular , Músculos/enzimologia , Mycobacterium tuberculosis/genética , Estabilidade Proteica , Pseudomonas aeruginosa/genética , Coelhos , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Solventes/metabolismo , Temperatura , Triose-Fosfato Isomerase/metabolismo
12.
Inorg Chem ; 50(15): 6859-61, 2011 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-21718007

RESUMO

We have obtained low-temperature magnetic circular dichroism (MCD) spectra for ferric cyano complexes of the wild type and E546N mutant of a human inducible nitric oxide synthase (iNOS) oxygenase/flavin mononucleotide (oxyFMN) construct. The mutation at the FMN domain has previously been shown to modulate the MCD spectra of the l-arginine-bound ferric iNOS heme (Sempombe, J.; et al. J. Am. Chem. Soc. 2009, 131, 6940-6941). The addition of l-arginine to the wild-type protein causes notable changes in the CN(-)-adduct MCD spectrum, while the E546N mutant spectrum is not perturbed. Moreover, the MCD spectral perturbation observed with l-arginine is absent in the CN(-) complexes incubated with N-hydroxy-L-arginine, which is the substrate for the second step of NOS catalysis. These results indicate that interdomain FMN-heme interactions exert a long-range effect on key heme axial ligand-substrate interactions that determine substrate oxidation pathways of NOS.


Assuntos
Dicroísmo Circular , Compostos Férricos/metabolismo , Mononucleotídeo de Flavina , Magnetismo , Proteínas Mutantes/química , Mutação , Óxido Nítrico Sintase Tipo II/química , Humanos , Modelos Moleculares , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Estrutura Terciária de Proteína , Especificidade por Substrato
13.
J Phys Chem A ; 115(37): 10345-52, 2011 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-21834532

RESUMO

Mammalian nitric oxide synthase (NOS) is a flavo-hemoprotein that catalyzes the oxidation of L-arginine to nitric oxide. Information about the relative alignment of the heme and FMN domains of NOS is important for understanding the electron transfer between the heme and FMN centers, but no crystal structure data for NOS holoenzyme are available. In our previous work [Astashkin, A. V.; Elmore, B. O.; Fan, W.; Guillemette, J. G.; Feng, C. J. Am. Chem. Soc. 2010, 132, 12059-12067], the distance between the imidazole-coordinated low-spin Fe(III) heme and FMN semiquinone in a human inducible NOS (iNOS) oxygenase/FMN construct has been determined by pulsed electron paramagnetic resonance (EPR). The orientation of the Fe-FMN radius vector, R(Fe-FMN), with respect to the heme g-frame was also determined. In the present study, pulsed electron-nuclear double resonance (ENDOR) investigation of the deuterons at carbons C2 and C5 in the deuterated coordinated imidazole was used to determine the relative orientation of the heme g-frame and molecular frame, from which R(Fe-FMN) can be referenced to the heme molecular frame. Numerical simulations of the ENDOR spectra showed that the g-factor axis corresponding to the low-field EPR turning point is perpendicular to the heme plane, whereas the axis corresponding to the high-field turning point is in the heme plane and makes an angle of about 80° with the coordinated imidazole plane. The FMN-heme domain docking model obtained in the previous work was found to be in qualitative agreement with the combined experimental results of the two pulsed EPR works.


Assuntos
Heme/química , Imidazóis/química , Óxido Nítrico Sintase Tipo II/química , Espectroscopia de Ressonância de Spin Eletrônica , Humanos , Modelos Moleculares
14.
J Am Chem Soc ; 132(34): 12059-67, 2010 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-20695464

RESUMO

Mammalian nitric oxide synthase (NOS) is a homodimeric flavo-hemoprotein that catalyzes the oxidation of L-arginine to nitric oxide (NO). Regulation of NO biosynthesis by NOS is primarily through control of interdomain electron transfer (IET) processes in NOS catalysis. The IET from the flavin mononucleotide (FMN) to heme domains is essential in the delivery of electrons required for O(2) activation in the heme domain and the subsequent NO synthesis by NOS. The NOS output state for NO production is an IET-competent complex of the FMN-binding domain and heme domain, and thereby it facilitates the IET from the FMN to the catalytic heme site. The structure of the functional output state has not yet been determined. In the absence of crystal structure data for NOS holoenzyme, it is important to experimentally determine the Fe...FMN distance to provide a key calibration for computational docking studies and for the IET kinetics studies. Here we used the relaxation-induced dipolar modulation enhancement (RIDME) technique to measure the electron spin echo envelope modulation caused by the dipole interactions between paramagnetic FMN and heme iron centers in the [Fe(III)][FMNH(*)] (FMNH(*): FMN semiquinone) form of a human inducible NOS (iNOS) bidomain oxygenase/FMN construct. The FMNH(*)...Fe distance has been directly determined from the RIDME spectrum. This distance (18.8 +/- 0.1 A) is in excellent agreement with the IET rate constant measured by laser flash photolysis [Feng, C. J.; Dupont, A.; Nahm, N.; Spratt, D.; Hazzard, J. T.; Weinberg, J.; Guillemette, J.; Tollin, G.; Ghosh, D. K. J. Biol. Inorg. Chem. 2009, 14, 133-142].


Assuntos
Compostos Férricos/química , Mononucleotídeo de Flavina/química , Heme/química , Óxido Nítrico Sintase Tipo II/metabolismo , Arginina/química , Arginina/metabolismo , Biocatálise , Espectroscopia de Ressonância de Spin Eletrônica , Transporte de Elétrons , Compostos Férricos/metabolismo , Mononucleotídeo de Flavina/metabolismo , Heme/metabolismo , Humanos , Óxido Nítrico/biossíntese , Óxido Nítrico/química , Óxido Nítrico Sintase Tipo II/química
15.
Biochim Biophys Acta ; 1784(12): 2065-70, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18845278

RESUMO

Calmodulin (CaM), the ubiquitous Ca(2+)-sensing protein, consists of two globular domains separated by a flexible central linker that properly orients CaM's globular domains to bind and regulate various intracellular proteins, including the nitric oxide synthase (NOS) enzymes. In the present study we determined that the charge and length of the central linker of CaM has an effect on the binding and activation of the NOS isozymes by using a variety of charge CaM mutants (T79D, S81D, T79D/S81D, S101D and E84R/E87K) and CaM mutants with residues removed (Delta84, Delta83-84, and Delta81-84). Our kinetic and spectropolarimetry results demonstrate that the NOS enzymes are not adversely affected by the CaM mutants with the exceptions of S101D, E84R/E87K and the deletion of residue 84. Electrostatic interactions in the central linker between residues 82-87 in combination with hydrophobic interactions in the globular domains of CaM are important for its tight association to inducible NOS.


Assuntos
Calmodulina/química , Complexos Multiproteicos/química , Óxido Nítrico Sintase Tipo II/química , Substituição de Aminoácidos , Animais , Calmodulina/genética , Calmodulina/metabolismo , Bovinos , Interações Hidrofóbicas e Hidrofílicas , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Mutação de Sentido Incorreto , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Estrutura Quaternária de Proteína/genética , Estrutura Secundária de Proteína/genética , Ratos , Eletricidade Estática
16.
J Am Chem Soc ; 131(20): 6940-1, 2009 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-19405537

RESUMO

The nitric oxide synthase (NOS) output state for NO production is a complex of the flavin mononucleotide (FMN)-binding domain and the heme domain, and thereby it facilitates the interdomain electron transfer from the FMN to the catalytic heme site. Emerging evidence suggests that interdomain FMN-heme interactions are important in the formation of the output state because they guide the docking of the FMN domain to the heme domain. In this study, notable effects of mutations in the adjacent FMN domain on the heme structure in a human iNOS bidomain oxygenase/FMN construct have been observed by using low-temperature magnetic circular dichroism (MCD) spectroscopy. The comparative MCD study of wild-type and mutant proteins clearly indicates that a properly docked FMN domain contributes to the observed L-Arg perturbation of the heme MCD spectrum in the wild-type protein and that the conserved surface residues in the FMN domain (E546 and E603) play key roles in facilitating a productive alignment of the FMN and heme domains in iNOS.


Assuntos
Heme/química , Óxido Nítrico Sintase Tipo II/química , Sítios de Ligação , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/genética , Mononucleotídeo de Flavina/metabolismo , Heme/genética , Heme/metabolismo , Humanos , Mutação , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Estrutura Terciária de Proteína
17.
J Biol Inorg Chem ; 14(1): 133-42, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18830722

RESUMO

Intraprotein electron transfer (IET) from flavin mononucleotide (FMN) to heme is essential in NO synthesis by NO synthase (NOS). Our previous laser flash photolysis studies provided a direct determination of the kinetics of the FMN-heme IET in a truncated two-domain construct (oxyFMN) of murine inducible NOS (iNOS), in which only the oxygenase and FMN domains along with the calmodulin (CaM) binding site are present (Feng et al. J. Am. Chem. Soc. 128, 3808-3811, 2006). Here we report the kinetics of the IET in a human iNOS oxyFMN construct, a human iNOS holoenzyme, and a murine iNOS holoenzyme, using CO photolysis in comparative studies on partially reduced NOS and a NOS oxygenase construct that lacks the FMN domain. The IET rate constants for the human and murine iNOS holoenzymes are 34 +/- 5 and 35 +/- 3 s(-1), respectively, thereby providing a direct measurement of this IET between the catalytically significant redox couples of FMN and heme in the iNOS holoenzyme. These values are approximately an order of magnitude smaller than that in the corresponding iNOS oxyFMN construct, suggesting that in the holoenzyme the rate-limiting step in the IET is the conversion of the shielded electron-accepting (input) state to a new electron-donating (output) state. The fact that there is no rapid IET component in the kinetic traces obtained with the iNOS holoenzyme implies that the enzyme remains mainly in the input state. The IET rate constant value for the iNOS holoenzyme is similar to that obtained for a CaM-bound neuronal NOS holoenzyme, suggesting that CaM activation effectively removes the inhibitory effect of the unique autoregulatory insert in neuronal NOS.


Assuntos
Óxido Nítrico Sintase Tipo II/metabolismo , Animais , Benzoquinonas/química , Transporte de Elétrons , Mononucleotídeo de Flavina/química , Mononucleotídeo de Flavina/metabolismo , Heme/química , Heme/metabolismo , Holoenzimas/química , Holoenzimas/metabolismo , Humanos , Cinética , Camundongos , Óxido Nítrico/biossíntese , Óxido Nítrico/química , Óxido Nítrico Sintase Tipo II/química , Oxirredução , Fotoquímica , Fatores de Tempo
18.
Biochemistry ; 47(46): 12006-17, 2008 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-18947187

RESUMO

Calmodulin (CaM) is a ubiquitous Ca (2+)-sensor protein that binds and activates the nitric oxide synthase (NOS) enzymes. We have used fluorescence resonance energy transfer (FRET) to examine the conformational transitions of CaM induced by its binding to synthetic nitric oxide synthase (NOS) CaM-binding domain peptides and full length heme-free constitutive NOS (cNOS) enzymes over a range of physiologically relevant free Ca (2+) concentrations. We demonstrate for the first time that the domains of CaM collapse when associated with Ca (2+)-independent inducible NOS CaM-binding domain, similar to the previously solved crystal structures of CaM bound to the Ca (2+)-dependent cNOS peptides. We show that the association of CaM is not detectable with the cNOS peptides at low free Ca (2+) concentrations (<40 nM). In contrast, we demonstrate that CaM associates with the cNOS holo-enzymes in the absence of Ca (2+) and that the Ca (2+)-dependent transition occurs at a lower free Ca (2+) concentration with the cNOS holo-enzymes. Our results suggest that other regions outside of the CaM-binding domain in the cNOS enzymes are involved in the recruitment and binding of CaM. We also demonstrate that CaM binds to the cNOS enzymes in a sequential manner with the Ca (2+)-replete C-lobe binding first followed by the Ca (2+)-replete N-lobe. This novel FRET study helps to clarify some of the observed similarities and differences between the Ca (2+)-dependent/independent interaction between CaM and the NOS isozymes.


Assuntos
Cálcio/química , Calmodulina/química , Transferência Ressonante de Energia de Fluorescência , Óxido Nítrico Sintase Tipo I/química , Peptídeos/química , Substituição de Aminoácidos , Animais , Cálcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Bovinos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Óxido Nítrico Sintase Tipo I/genética , Óxido Nítrico Sintase Tipo I/metabolismo , Óxido Nítrico Sintase Tipo II/química , Óxido Nítrico Sintase Tipo II/genética , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo III , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica/fisiologia , Estrutura Terciária de Proteína/fisiologia , Ratos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
19.
Biochim Biophys Acta ; 1774(10): 1351-8, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17890165

RESUMO

The nitric oxide synthase (NOS) enzymes are bound and activated by the Ca(2+)-binding protein, calmodulin (CaM). We have utilized CaM mutants deficient in binding Ca(2+) with mutations in the N-lobe (CaM(12)), the C-lobe (CaM(34)), or both lobes of CaM (CaM(1234)) to determine their effect on the binding and activation of the Ca(2+)-dependent neuronal (nNOS) and Ca(2+)-independent inducible NOS (iNOS) isoforms. Four different kinetic assays were employed to monitor the effect of these CaM mutants on electron transfer rates in NOS. Protein-protein interactions between CaM and NOS were studied using steady-state fluorescence and spectropolarimetry to monitor the binding of these CaM mutants to nNOS and iNOS CaM-binding domain peptides. The CaM mutants were unable to activate nNOS, however, our CD results show that the C-terminal lobe of CaM is capable of binding to nNOS peptide in the presence of Ca(2+). Our results prove for the first time without the use of chelators that apo-CaM is capable of binding to iNOS peptides and holoenzymes.


Assuntos
Cálcio/metabolismo , Calmodulina/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase Tipo I/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos/genética , Animais , Calmodulina/genética , Calmodulina/fisiologia , Cátions Bivalentes/metabolismo , Quelantes/metabolismo , Ativação Enzimática/genética , Escherichia coli , Humanos , Dados de Sequência Molecular , Peptídeos/genética , Peptídeos/metabolismo , Ligação Proteica/genética , Ratos
20.
FEBS J ; 273(8): 1759-71, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16623711

RESUMO

Calmodulin (CaM) is a cytosolic Ca(2+) signal-transducing protein that binds and activates many different cellular enzymes with physiological relevance, including the nitric oxide synthase (NOS) isozymes. CaM consists of two globular domains joined by a central linker; each domain contains an EF hand pair. Four different mutant CaM proteins were used to investigate the role of the two CaM EF hand pairs in the binding and activation of the mammalian inducible NOS (iNOS) and the constitutive NOS (cNOS) enzymes, endothelial NOS (eNOS) and neuronal NOS (nNOS). The role of the CaM EF hand pairs in different aspects of NOS enzymatic function was monitored using three assays that monitor electron transfer within a NOS homodimer. Gel filtration studies were used to determine the effect of Ca(2+) on the dimerization of iNOS when coexpressed with CaM and the mutant CaM proteins. Gel mobility shift assays were performed to determine binding stoichiometries of CaM proteins to synthetic NOS CaM-binding domain peptides. Our results show that the N-terminal EF hand pair of CaM contains important binding and activating elements for iNOS, whereas the N-terminal EF hand pair in conjunction with the central linker region is required for cNOS enzyme binding and activation. The iNOS enzyme must be coexpressed with wild-type CaM in vitro because of its propensity to aggregate when residues of the highly hydrophobic CaM-binding domain are exposed to an aqueous environment. A possible role for iNOS aggregation in vivo is also discussed.


Assuntos
Calmodulina/metabolismo , Motivos EF Hand , Óxido Nítrico Sintase Tipo III/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Óxido Nítrico Sintase/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Calmodulina/genética , Bovinos , Transporte de Elétrons , Ensaio de Desvio de Mobilidade Eletroforética , Ativação Enzimática , Escherichia coli/genética , Humanos , Isoenzimas , Dados de Sequência Molecular , Mutação , NADPH Oxidases/metabolismo , Óxido Nítrico Sintase Tipo I , Oxiemoglobinas/metabolismo , Ligação Proteica , Ratos , Proteínas Recombinantes , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA