Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38734936

RESUMO

Rheumatoid arthritis (RA) is an idiopathic and chronic autoimmune disease for which there are currently no effective treatments. Oxypeucedanin hydrate (OXH) is a natural coumarin known for its potent anti-inflammatory properties. However, further investigations are needed to determine its therapeutic efficacy in treating RA. In this study, we evaluate the anti-inflammatory activity of OXH by treating LPS-induced RAW264.7 macrophages. Our results show that OXH treatment reverses the changes in iNOS, COX-2, IL-1ß, IL-6, and TNF-α levels. Additionally, OXH reduces ROS production. Further analysis reveals that OXH suppresses the activation of the NF-κB/MAPK pathway. CETSA results show that OXH competes with LPS for binding to the TLR4/MD2 complex. MST experiments demonstrate the specific affinity of OXH for the TLR4/MD2 complex, with a Kd value of 33.7 µM. Molecular docking analysis suggests that OXH binds to the pocket of the TLR4/MD2 complex and interacts with specific amino acids, such as GLY-343, LYS-388, and PHE-345. Molecular dynamics simulations further confirm this conclusion. Finally, we investigate the potential of OXH in treating RA using a collagen-induced arthritis (CIA) model in rats. OXH effectively ameliorates the symptoms of CIA, including improving body weight, reducing swelling and redness, increasing talus volume, and decreasing bone erosion. OXH also decreases the mRNA levels of pro-inflammatory factors in synovial tissue. Transcriptome enrichment analysis and western blot analysis confirm that OXH suppresses the NF-κB/MAPK pathway, which is consistent with our in vitro findings.

2.
Chem Biodivers ; : e202401093, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38867371

RESUMO

Two previously undescribed coumarins (1-2) were isolated from the root of Notopterygium incisum. The structures of new findings were elucidated by analyses of spectral evidences in HRESIMS, NMR, as well as ICD. The absolute configurations were further confirmed by chemical calculations. 1-2 exhibits obviously anti-inflammatory activity by inhibiting the expression of inflammatory mediators (COX-2, iNOS), as well as reducing the release of NO and the accumulation of ROS in cells. Western blotting analysis revealed that 2 could inhibit the PI3K/AKT pathway by reducing the expression of p-PI3K and p-AKT.

3.
J Sep Sci ; 46(8): e2200883, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36820810

RESUMO

The Panxi area in Sichuan Province is the main area for the production of truffles in China, and several species of truffle are known to exist in this region. Nevertheless, it is unclear what the differences in chemical composition between the truffles are. Using an ultra-high-performance liquid chromatography quadrupole/orbitrap high-resolution mass spectrometry coupled with Compound Discoverer 3.0, we identified chemical components in three mainly known truffles from the Panxi region. Further analysis of chemical composition differences was conducted using principal component analysis, and orthogonal partial least squares discriminant analysis. Note that, 78.9% of the variance was uncovered by the principal component analysis model. As a result of the orthogonal partial least squares discriminant analysis model, the three species of truffles (Tuber pesudohimalayense, Tuber indicum, and Tuber sinense) from Panxi were better discriminated, with R2 X, R2 Y, and Q2 being 0.821, 0.993, and 0.947, respectively. In this study, 87 components were identified. T. pesudohimalayense contained significantly higher levels of nine different compounds than the other two species. Hence, it was possible to identify similarities and differences between three species of truffles from Panxi in terms of chemical composition. This can be used as a basis for quality control.


Assuntos
Espectrometria de Massas , China , Análise Discriminante
4.
Mar Drugs ; 21(2)2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36827144

RESUMO

Based on the structures of natural products streptochlorin and pimprinine derived from marine or soil microorganisms, a series of streptochlorin derivatives containing the nitrile group were designed and synthesized through acylation and oxidative annulation. Evaluation for antifungal activity showed that compound 3a could be regarded as the most promising candidate-it demonstrated over 85% growth inhibition against Botrytis cinerea, Gibberella zeae, and Colletotrichum lagenarium, as well as a broad antifungal spectrum in primary screening at the concentration of 50 µg/mL. The SAR study revealed that non-substituent or alkyl substituent at the 2-position of oxazole ring were favorable for antifungal activity, while aryl and monosubstituted aryl were detrimental to activity. Molecular docking models indicated that 3a formed hydrogen bonds and hydrophobic interactions with Leucyl-tRNA Synthetase, offering a perspective for the possible mechanism of action for antifungal activity of the target compounds.


Assuntos
Antifúngicos , Fungicidas Industriais , Antifúngicos/farmacologia , Estrutura Molecular , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Oxazóis/química , Fungicidas Industriais/farmacologia
5.
Phytochem Anal ; 34(8): 938-949, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37483127

RESUMO

INTRODUCTION: Citri Sarcodactylis Fructus has the effects of relieving cough, removing phlegm, and reducing asthma, but little is known about the metabolic and distribution of its chemical constituents in vivo. Therefore, it is necessary to study the metabolism of Citri Sarcodactylis Fructus in vivo. OBJECTIVE: We aimed to (1) analyze the distribution of prototype compounds and metabolites of the chemical constituents of Citri Sarcodactylis Fructus in rat and (2) infer the metabolites and metabolic pathways of the chemical constituents. MATERIALS AND METHODS: A C18 column (3 × 100 mm, 2.6 µm) was used. The mobile phase was water containing 0.1% formic acid (eluent A) and acetonitrile containing 0.1% formic acid (eluent B) at a discharge rate of 0.3 mL/min. Mass spectra of biological samples were collected in electrospray ionization (ESI) positive ion mode in the m/z 100-1500 scan range. The obtained biological samples were then subjected to chemical analysis, including plasma, urine, feces, and heart, liver, spleen, lungs, kidneys, stomach, and small intestine tissues. Prototype compounds and metabolites were identified. RESULTS: In all, 40 prototype compounds and 78 metabolites, including 26 phase I metabolites and 52 phase II metabolites, were identified using UHPLC-Q/Orbitrap HRMS. Eight possible metabolic pathways (reduction, hydrolysis, dehydration, methylation, hydroxylation, sulfation, glucuronidation, and demethylation) were proposed. The prototype compounds were predominantly distributed in lung tissues. The metabolites were mainly distributed in plasma and kidney tissues. CONCLUSION: We systematically investigated the metabolites of Citri Sarcodactylis Fructus in vivo. We suggest metabolic pathways that might be relevant for further metabolic studies and screening of active ingredients of Citrus Sarcodactylis Fructus in vivo.


Assuntos
Medicamentos de Ervas Chinesas , Ratos , Animais , Cromatografia Líquida de Alta Pressão , Formiatos , Espectrometria de Massas em Tandem
6.
J Asian Nat Prod Res ; 25(2): 147-155, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35582859

RESUMO

Amestolkins A (1) and B (2), two previously undescribed phthalides sharing the same planar structure of (1, 5-dihydroxyhexyl)-7-hydroxyisobenzofuran-1(3H)-one were isolated from Talaromyces amestolkiae. Their absolute configurations were elucidated by comprehensive analyses of spectroscopic evidences in high-resolution electrospray mass spectra (HRESIMS) and nuclear magnetic resonance (NMR) combined with electronic circular dichroism (ECD) and NMR calculations. 1 and 2 showed anti-neuroinflammatory activity by inhibiting the gene expressions of proinflammatory factors including C-C motif chemokine ligand 2 (CCL-2), tumor necrosis factor-α (TNF-α) and interleukin 6 (IL-6), as well as attenuating the excretion of inducible nitric oxide synthase (iNOS) in BV-2 microglial cells at the concentration of 30 µM.


Assuntos
Talaromyces , Estrutura Molecular , Espectroscopia de Ressonância Magnética , Talaromyces/química
7.
J Nat Prod ; 85(6): 1474-1485, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35696541

RESUMO

Transcriptome analysis is shown to be an effective strategy to understand the potential function of natural products. Here, it is reported that 11 previously undescribed hydroanthraquinones [nigroquinones A-K (1-11)], along with eight known congeners, were isolated from Nigrospora sphaerica. Their structures were elucidated by interpreting spectroscopic and spectrometric data including high-resolution mass spectra and nuclear magnetic resonance. The absolute configurations of 1-11 were confirmed by electronic circular dichroism calculations. Transcriptome analysis revealed that 3 (isolated in the largest amount) might be anti-inflammatory. Assays based on LPS-induced RAW264.7 macrophages and zebrafish embryos confirmed that some of the isolated hydroanthraquinones attenuated the secretion of pro-inflammatory mediators in vitro and in vivo. Further Western blotting and immunofluorescence experiments indicated that 4 (which showed the most obvious nitric oxide inhibition) could suppress the expression of nuclear factor-kappa-B (NF-κB), phosphorylation of the inhibitor of NF-κB kinase and inhibit the transportation of NF-κB to the nucleus. Hence, the suppression of the NF-κB signaling pathway may be responsible for the anti-inflammatory effect. These results show that bioactivity evaluation on the basis of transcriptome analysis may be effective in the functional exploration of natural products.


Assuntos
Produtos Biológicos , NF-kappa B , Animais , Anti-Inflamatórios/farmacologia , Ascomicetos , Perfilação da Expressão Gênica , Lipopolissacarídeos/farmacologia , Camundongos , Óxido Nítrico , Óxido Nítrico Sintase Tipo II/metabolismo , Células RAW 264.7 , Peixe-Zebra
8.
Bioorg Chem ; 124: 105810, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35447407

RESUMO

Three previously undescribed polyketides [proliferatin A-C (1-3)] with anti-inflammatory activity were isolated from Fusarium proliferatum. 1-3 attenuated the production of inflammatory signal messengers including nitric oxide (NO), reactive oxygen species, proinflammatory cytokines interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and interleukin-1ß (IL-1ß), as well as the related proteins nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in lipopolysaccharide (LPS)-induced RAW264.7 macrophages. Transcriptome analyses based on RNA-seq indicated the potential anti-inflammatory mechanism of 1-3 involved in the nuclear factor kappa-B (NF-κB) and mitogen activated protein kinases (MAPKs) signaling pathways. Experimental evaluation of the protein levels revealed that 1-3 can inhibit the phosphorylation of IκB kinase (IKK), the degradation of NF-κB Inhibitor-α (IκBα), the phosphorylation of nuclear factor-κB (NF-κB) and can reduce NF-κB transportation to the nucleus. Interestingly, 1-3 decreased the phosphorylation of MAPKs including p-p38, p-ERK, and p-JNK. Molecular docking models suggest that binding of 1-3 to TLR4-MD-2 complex may lead to inhibition of NF-κB and MAPK signaling pathways, which was confirmed in vitro by surface plasmon resonance (SPR) assays. 1-3 can thus constitute potential therapeutic candidates for the treatment of inflammation-associated diseases.


Assuntos
Lipopolissacarídeos , NF-kappa B , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Ciclo-Oxigenase 2/metabolismo , Humanos , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Lipopolissacarídeos/metabolismo , Lipopolissacarídeos/farmacologia , Sistema de Sinalização das MAP Quinases , Simulação de Acoplamento Molecular , NF-kappa B/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
9.
Acta Biochim Biophys Sin (Shanghai) ; 55(1): 23-33, 2022 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-36017888

RESUMO

Neuroinflammation mediated by microglia is an important pathophysiological mechanism in neurodegenerative diseases. However, there is a lack of effective drugs to treat neuroinflammation. N-acetyldopamine dimer (NADD) is a natural compound from the traditional Chinese medicine Isaria cicada. In our previous study, we found that NADD can attenuate DSS-induced ulcerative colitis by suppressing the NF-κB and MAPK pathways. Does NADD inhibit neuroinflammation, and what is the target of NADD? To answer this question, lipopolysaccharide (LPS)-stimulated BV-2 microglia was used as a cell model to investigate the effect of NADD on neuroinflammation. Nitric oxide (NO) detection, reactive oxygen species (ROS) detection and enzyme-linked immunosorbent assay (ELISA) results show that NADD attenuates inflammatory signals and proinflammatory cytokines in LPS-stimulated BV-2 microglia, including NO, ROS, tumor necrosis factor (TNF)-α, interleukin (IL)-1ß and interleukin-6 (IL-6). Western blot analysis show that NADD inhibits the protein levels of Toll-like receptor 4 (TLR4), nuclear factor kappa-B (NF-κB), NOD-like receptor thermal protein domain associated protein 3 (NLRP3), ASC and cysteinyl aspartate specific proteinase (Caspase)-1, indicating that NADD may inhibit neuroinflammation through the TLR4/NF-κB and NLRP3/Caspase-1 signaling pathways. In addition, surface plasmon resonance assays and molecular docking demonstrate that NADD binds with TLR4 directly. Our study reveals a new role of NADD in inhibiting the TLR4/NF-κB and NLRP3/Caspase-1 pathways, and shows that TLR4-MD2 is the direct target of NADD, which may provide a potential therapeutic candidate for the treatment of neuroinflammation.


Assuntos
NF-kappa B , Receptor 4 Toll-Like , Humanos , NF-kappa B/metabolismo , Receptor 4 Toll-Like/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácido Aspártico/metabolismo , Doenças Neuroinflamatórias , Peptídeo Hidrolases/metabolismo , Lipopolissacarídeos/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Simulação de Acoplamento Molecular , Interleucina-6/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Caspases/metabolismo , Microglia/metabolismo
10.
Mar Drugs ; 20(12)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36547887

RESUMO

Pimprinine and streptochlorin are indole alkaloids derived from marine or soil microorganisms. In our previous study, they were promising lead compounds due to their potent bioactivity in preventing many phytopathogens, but further structural modifications are required to improve their antifungal activity. In this study, pimprinine and streptochlorin were used as parent structures with the combination strategy of their structural features. Three series of target compounds were designed and synthesized. Subsequent evaluation for antifungal activity against six common phytopathogenic fungi showed that some of thee compounds possessed excellent effects, and this is highlighted by compounds 4a and 5a, displaying 99.9% growth inhibition against Gibberella zeae and Alternaria Leaf Spot under 50 µg/mL, respectively. EC50 values indicated that compounds 4a, 5a, 8c, and 8d were even more active than Azoxystrobin and Boscalid. SAR analysis revealed the relationship between 5-(3'-indolyl)oxazole scaffold and antifungal activity, which provides useful insight into the development of new target molecules. Molecular docking models indicate that compound 4a binds with leucyl-tRNA synthetase in a similar mode as AN2690, offering a perspective on the mode of action for the study of its antifungal activity. These results suggest that compounds 4a and 5a could be regarded as novel and promising antifungal agents against phytopathogens due to their valuable potency.


Assuntos
Antifúngicos , Fungos , Antifúngicos/farmacologia , Antifúngicos/química , Estrutura Molecular , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Oxazóis/farmacologia , Oxazóis/química , Alternaria
11.
Phytochem Anal ; 33(1): 72-82, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34114292

RESUMO

INTRODUCTION: Citri Sarcodactylis Fructus (CSF) is widely used as a food ingredient and a traditional Chinese medicine. In China, CSF is cultivated in many places, including Sichuan, Guangdong, Zhejiang, and Fujian provinces. The types and chemical contents of CSF from different origins may vary greatly due to the difference in climate and environmental conditions. Therefore, comparing the chemical composition of CSF from various places is vital. OBJECTIVE: To rapidly select potential characteristic compounds for differentiating CSF from different origins. MATERIAL AND METHODS: Thirty-one batches of CSF samples from different regions were analysed using ultra-performance liquid chromatography with hybrid quadrupole-orbitrap high-resolution mass spectrometry. Thereafter, chemometric methods, including principal component analysis (PCA) and orthogonal partial least squares discrimination analysis (OPLS-DA), were employed to find differential metabolites among the CSF samples from various origins. RESULTS: PCA revealed 77.9% of the total variance and divided all CSF samples into three categories corresponding to their origins. OPLS-DA displayed better discrimination of CSF from different sources, with R2 X, R2 Y, and Q2 of 0.801, 0.985, and 0.849, respectively. Finally, 203 differential metabolites were obtained from CSF from different origins using the variable importance in projection of the OPLS-DA model, 30 of which were identified, and five coumarin compounds were selected as marker compounds discriminating CSF from different origins. CONCLUSION: This work provides a practical strategy for classifying CSF from different origins and offers a research foundation for the quality control of CSF.


Assuntos
Citrus/química , Medicamentos de Ervas Chinesas , Cromatografia Líquida de Alta Pressão , Medicamentos de Ervas Chinesas/análise , Frutas , Geografia , Espectrometria de Massas , Medicina Tradicional Chinesa , Análise de Componente Principal
12.
Bioorg Med Chem ; 35: 116073, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33610010

RESUMO

Streptochlorin is a small molecule of indole alkaloid isolated from marine Streptomyces sp., it is a promising lead compound due to its potent bioactivity in preventing many phytopathogens in our previous study, but further structural modifications are required to improve its antifungal activity. Our work in this paper focused on the replacement of oxazole ring in streptochlorin with the imidazole ring, to discover novel analogues. Based on this design strategy, three series of streptochlorin analogues were efficiently synthesized through sequential Vilsmeier-Haack reaction, Van Leusen imidazole synthesis and halogenation reaction. Some of the analogues displayed excellent activity in the primary assays, and this is highlighted by compounds 4g and 4i, the growth inhibition against Alternaria Leaf Spot and Rhizoctorzia solani under 50 µg/mL are 97.5% and 90.3%, respectively, even more active than those of streptochlorin, pimprinine and Osthole. Molecular docking models indicated that streptochlorin binds with Thermus thermophiles Leucyl-tRNA Synthetase in a similar mode to AN2690, offering a perspective on the mode of action study for antifungal activities of streptochlorin derivatives. Further study is still ongoing with the aim of discovering synthetic analogues, with improved antifungal activity and clear mode of action.


Assuntos
Alternaria/efeitos dos fármacos , Antifúngicos/farmacologia , Desenho de Fármacos , Indóis/farmacologia , Simulação de Acoplamento Molecular , Oxazóis/farmacologia , Rhizoctonia/efeitos dos fármacos , Antifúngicos/síntese química , Antifúngicos/química , Relação Dose-Resposta a Droga , Indóis/síntese química , Indóis/química , Testes de Sensibilidade Microbiana , Estrutura Molecular , Oxazóis/síntese química , Oxazóis/química , Relação Estrutura-Atividade
13.
J Nat Prod ; 84(12): 3044-3054, 2021 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-34846889

RESUMO

Overexpression of various pro-inflammatory factors in microglial cells tends to induce neurodegenerative diseases, for which there is no effective therapy available. Aureonitol (1) and seven analogues, including six previously undescribed [elatumenol A-F (2-4, 6-8, respectively)], along with two new orsellinic acid esters [elatumone A and B (9 and 10)], were isolated from Chaetomium elatum. The structures of the compounds were established through comprehensive analysis of spectroscopic data, including high-resolution mass spectra and one- and two-dimensional NMR, and absolute configurations determined by the Mosher method, dimolybdenum tetraacetate-induced circular dichroism, and theoretical calculations including electronic circular dichroism and NMR. Metabolites 3, 4, 7, and 8 exhibited antineuroinflammatory activity by attenuating the production of inflammatory mediators, such as nitric oxide, interleukin-6, interleukin-1ß, tumor necrosis factor-α, and reactive oxygen species. Western blot results indicated 8 decreases the level of inducible nitric oxide synthase and cyclooxygenase-2 and suppresses the expression of Toll-like receptor 4 and nuclear factor kappa-B (NF-κB) as well as the phosphorylation of the inhibitor of NF-κB and p38 mitogen-activated protein kinases in lipopolysaccharide-activated BV-2 microglial cells.


Assuntos
Anti-Inflamatórios/farmacologia , Chaetomium/química , Furanos/farmacologia , Microglia/efeitos dos fármacos , Resorcinóis/farmacologia , Animais , Ésteres/química , Furanos/química , Lipopolissacarídeos/farmacologia , Camundongos , Óxido Nítrico/antagonistas & inibidores , Resorcinóis/química , Análise Espectral/métodos
14.
Chem Biodivers ; 18(10): e2100403, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34370372

RESUMO

Three previously undescribed chlorophenyl glycosides, (2,4,6-trichloro-3-hydroxy-5-methoxyphenyl)methyl ß-D-glucopyranoside (1), (2,4-dichloro-3,5-dimethoxyphenyl)methyl 6-O-ß-D-glucopyranosyl-ß-D-glucopyranoside (2) and 4-chloro-3-methoxy-5-methylphenyl 6-O-(6-deoxy-ß-L-mannopyranosyl)-ß-D-glucopyranoside (3) were obtained from Lilium regale. The absolute configurations of these new finds were elucidated by comprehensive analyses of spectroscopic data combined with acid hydrolysis derivatization. (2,4-dichloro-3,5-dimethoxyphenyl)methyl 6-O-ß-D-glucopyranosyl-ß-D-glucopyranoside (2) can inhibit the proliferation of lung carcinoma A549 cells with an IC50 value of 29 µΜ.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Glicosídeos/farmacologia , Lilium/química , Raízes de Plantas/química , Células A549 , Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/isolamento & purificação , Proliferação de Células/efeitos dos fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Glicosídeos/química , Glicosídeos/isolamento & purificação , Humanos , Conformação Molecular , Células Tumorais Cultivadas
15.
Phytother Res ; 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33090621

RESUMO

Cordycepin is the major bioactive component extracted from Cordyceps militaris. In recent years, cordycepin has received increasing attention owing to its multiple pharmacological activities. This study reviews recent researches on the anti-inflammatory effects and the related activities of cordycepin. The results from our review indicate that cordycepin exerts protective effects against inflammatory injury for many diseases including acute lung injury (ALI), asthma, rheumatoid arthritis, Parkinson's disease (PD), hepatitis, atherosclerosis, and atopic dermatitis. Cordycepin regulates the NF-κB, RIP2/Caspase-1, Akt/GSK-3ß/p70S6K, TGF-ß/Smads, and Nrf2/HO-1 signaling pathways among others. Several studies focusing on cordycepin derivatives were reviewed and found to down metabolic velocity of cordycepin and increase its bioavailability. Moreover, cordycepin enhanced immunity, inhibited the proliferation of viral RNA, and suppressed cytokine storms, thereby suggesting its potential to treat COVID-19 and other viral infections. From the collected and reviewed information, this article provides the theoretical basis for the clinical applications of cordycepin and discusses the path for future studies focusing on expanding the medicinal use of cordycepin. Taken together, cordycepin and its analogs show great potential as the next new class of anti-inflammatory agents.

16.
J Asian Nat Prod Res ; 22(2): 138-143, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30450959

RESUMO

Two previously undescribed sesquiterpenes along with nine known compounds were isolated from the fermentation broth of Aspergillus fumigatus, an endophyte of Ligusticum wallichii. Their structures were elucidated through extensive spectroscopic analysis combined with quantum chemical ECD calculations. Two new compounds exhibited moderate growth inhibition against MV4-11 and MDA-MB-231 cell lines.


Assuntos
Ligusticum , Sesquiterpenos , Aspergillus fumigatus , Endófitos , Estrutura Molecular
17.
J Nat Prod ; 82(7): 1813-1819, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31310115

RESUMO

Eight new sulfur-bridged pyranonaphthoquinone (PNQ) dimers, naquihexcins C-J (1-8), a new PNQ monomer, naquihexcin K (10), and three known analogues (9, 11, and 12) were isolated from Streptomyces sp. KIB3133. The new structures were elucidated by interpretation of spectroscopic data. Dimer 4 was synthesized via a cascade SN2 reactions between two monomers and sodium sulfide, an approach motivated by the proposed biosynthetic pathway of dimeric pyranonaphthoquinones. Naquihexcin E (3) exhibited moderate HIV-1 inhibitory activity. Naquihexcins C (1), E (3), and I (7) showed inhibitory effects against two tumor cell lines (HL-60 and MCF-7) with IC50 values ranging from 1.4 to 16.1 µM.


Assuntos
Fármacos Anti-HIV/farmacologia , Antineoplásicos/farmacologia , Naftoquinonas/química , Piranos/química , Microbiologia do Solo , Streptomyces/química , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13 , Linhagem Celular Tumoral , Dimerização , Ensaios de Seleção de Medicamentos Antitumorais , HIV-1/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Naftoquinonas/farmacologia
18.
J Nat Prod ; 82(9): 2409-2418, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-31419126

RESUMO

Six new ellagitannins, brevipetins B-G (5 and 7-11), and a new phenolic glucoside, brevipetin A (4), along with six known compounds were isolated from the traditional Chinese medicinal plant Cleidion brevipetiolatum. Their structures and absolute configurations were determined by spectroscopic analyses, chemical methods, and TD-DFT-ECD calculations. Compounds 5-11 exhibited NO inhibitory effects with IC50 values of 1.9-8.2 µM, and 9 showed the most potent inhibitory effect (IC50: 1.9 µM). An in vivo anti-inflammatory assessment of 9 showed that it exerts therapeutic effects in both the carrageenan-induced rat paw edema and collagen-induced arthritis (CIA) models at 50 mg/kg oral administration. The enhanced protein and mRNA expression levels of iNOS (inducible nitric oxide synthase) and COX-2 (cyclooxygenase-2) in LPS-stimulated RAW 264.7 cells were dose-dependently suppressed by 9. An anti-inflammatory mechanistic study revealed that 9 suppressed NF-κB activity by inhibiting IκBα phosphorylation and blocking translocation of p65 from the cytosol to the nucleus. Therefore, 9 might have the potential to be developed as a lead compound for relieving rheumatoid arthritis.


Assuntos
Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Artrite Reumatoide/tratamento farmacológico , Euphorbiaceae/química , Taninos Hidrolisáveis/isolamento & purificação , Taninos Hidrolisáveis/uso terapêutico
19.
Molecules ; 24(16)2019 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-31405117

RESUMO

Two new terpene glycosides (1-2) along with two known analogs (3-4) were obtained from the root of Sanguisorba officinalis, which is a common traditional Chinese medicine (TCM). Their structures were elucidated by nuclear magnetic resonance (NMR), electrospray ionization high resolution mass spectrometry (HRESIMS), and a hydrolysis reaction, as well as comparison of these data with the literature data. Compounds 1-4 exhibited anti-inflammatory properties in vitro by attenuating the production of inflammatory mediators, such as nitric oxide (NO) as well as tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6). An anti-inflammatory assay based on the zebrafish experimental platform indicated that compound 1 had good anti-inflammatory activity in vivo by not only regulating the distribution, but also by reducing the amount of the macrophages of the zebrafish exposed to copper sulfate.


Assuntos
Anti-Inflamatórios , Glicosídeos , Sanguisorba/química , Terpenos , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/isolamento & purificação , Anti-Inflamatórios/farmacologia , Glicosídeos/química , Glicosídeos/isolamento & purificação , Glicosídeos/farmacologia , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Inflamação/patologia , Interleucina-6/metabolismo , Camundongos , Óxido Nítrico/metabolismo , Células RAW 264.7 , Terpenos/química , Terpenos/isolamento & purificação , Terpenos/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Peixe-Zebra
20.
Molecules ; 24(2)2019 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650614

RESUMO

Three new thiodiketopiperazines (1⁻3), along with two known analogues (4 and 5), were isolated from the fermentation broth of Penicillium crustosum. Their structures were elucidated through extensive spectroscopic analysis and the absolute configurations of new compounds were determined by Mosher ester analysis and calculated ECD spectra. Compound 4 and 5 have the activity to promote the gastrointestinal motility of zebrafish via acting on the cholinergic nervous system.


Assuntos
Dicetopiperazinas/química , Dicetopiperazinas/farmacologia , Motilidade Gastrointestinal/efeitos dos fármacos , Penicillium/química , Animais , Dicetopiperazinas/isolamento & purificação , Dicetopiperazinas/metabolismo , Modelos Moleculares , Estrutura Molecular , Penicillium/metabolismo , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA