Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Small ; 18(18): e2200439, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35355393

RESUMO

The intercrystalline interfaces have been proven vital in heterostructure catalysts. However, it is still challenging to generate specified heterointerfaces and to make clear the mechanism of a reaction on the interface. Herein, this work proposes a strategy of Fe-catalyzed cascade formation of heterointerfaces for comprehending the hydrogen evolution reaction (HER). In the pure solid-phase reaction system, Fe catalyzes the in situ conversion of MoO2 to MoC and then Mo2 C, and the consecutive formation leaves lavish intercrystalline interfaces of MoO2 -MoC (in Fe-MoO2 /MoC@NC) or MoC-Mo2 C (in Fe-MoC/ß-Mo2 C@NC), which contribute to HER activity. The improved HER activity on the interface leads to further checking of the mechanism with density functional theory calculation. The computation results reveal that the electroreduction (Volmer step) produced H* prefers to be adsorbed on Mo2 C; then two pathways are proposed for the HER on the interface of MoC-Mo2 C, including the single-molecular adsorption pathway (Rideal mechanism) and the bimolecular adsorption pathway (Langmuir-Hinshelwood mechanism). The calculation results further show that the former is favorable, and the reaction on the MoC-Mo2 C heterointerface significantly lowers the energy barriers of the rate-determining steps.


Assuntos
Hidrogênio , Ferro , Catálise , Hidrogênio/química , Molibdênio/química
2.
J Colloid Interface Sci ; 633: 746-753, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36493740

RESUMO

Synthesis of regular morphology catalysts with self-growing substrates is one of the effective methods to solve the problem of easy shedding of heterogeneous catalysts. In this study, Fe-doped Ni12P5 nanorods were prepared by depositing 1,1' -bis (diphenylphosphine) ferrocene (DPPF) on N-doped C/NF. The bottom-up growth of the nanorod is ascribed to the preferential adsorption of DPPF with a P site to NF that is surface-doped with the solid-solving C, and the length of nanorods can reach tens of microns and has good robustness. The N-doped carbon-constrained rod-shaped Fe-doped Ni12P5 catalyst (Fe-Ni12P5/NdC/NF-800) that grows on NF has excellent catalytic performance for the urea oxidation reaction. In addition, the current density can be maintained as high as 100 mA cm-2 and the current attenuation is weak for 12 h, and the rod shape remains good. This work provides a new idea for synthesizing self-growing catalysts with regular morphology to improve the performance of heterogeneous catalysts.

3.
ChemSusChem ; 15(24): e202201584, 2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36195829

RESUMO

Small-molecule induction can lead to the oriented migration of metal elements, which affords functional materials with synergistic components. In this study, phosphating nickel foam (NF)-supported octahedral WO3 with phosphine affords P-WO3 /NF electrocatalyst. Ni is found to form Ni-P bonds that migrate from NF to WO3 under the induction of P, resulting in the complex oxides W1.3 Ni0.24 O4 and Ni2 P2 O7 in the particle interior and nickel phosphide on the octahedral grain surface. The catalytic activity of P-WO3 /NF in the urea oxidation reaction (UOR) is improved by synergistic action of the components in the synthesized hybrid particles. A current density of 10 mA cm-2 can be reached at a potential of 1.305 V, the double layer capacitance of the catalyst is significantly increased, and the electron transfer impedance in catalytic UOR is reduced. This work demonstrates that small-molecule induction is suitable for constructing co-catalysts with complex components in a simple protocol, which provides a new route for the design of highly efficient urea oxidation electrocatalysts.


Assuntos
Níquel , Óxidos , Oxirredução , Transporte de Elétrons , Ureia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA