Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(19)2022 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-36232729

RESUMO

ATP-dependent Lon proteases are key participants in the quality control system that supports the homeostasis of the cellular proteome. Based on their unique structural and biochemical properties, Lon proteases have been assigned in the MEROPS database to three subfamilies (A, B, and C). All Lons are single-chain, multidomain proteins containing an ATPase and protease domains, with different additional elements present in each subfamily. LonA and LonC proteases are soluble cytoplasmic enzymes, whereas LonBs are membrane-bound. Based on an analysis of the available sequences of Lon proteases, we identified a number of enzymes currently assigned to the LonB subfamily that, although presumably membrane-bound, include structural features more similar to their counterparts in the LonA subfamily. This observation was confirmed by the crystal structure of the proteolytic domain of the enzyme previously assigned as Bacillus subtilis LonB, combined with the modeled structure of its ATPase domain. Several structural features present in both domains differ from their counterparts in either LonA or LonB subfamilies. We thus postulate that this enzyme is the founding member of a newly identified LonBA subfamily, so far found only in the gene sequences of firmicutes.


Assuntos
Protease La , Proteases Dependentes de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Trifosfato de Adenosina/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Peptídeo Hidrolases/metabolismo , Protease La/genética , Protease La/metabolismo , Proteoma/metabolismo
2.
J Biol Chem ; 291(5): 2288-301, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26644466

RESUMO

Bla g 2 is a major indoor cockroach allergen associated with the development of asthma. Antigenic determinants on Bla g 2 were analyzed by mutagenesis based on the structure of the allergen alone and in complex with monoclonal antibodies that interfere with IgE antibody binding. The structural analysis revealed mechanisms of allergen-antibody recognition through cation-π interactions. Single and multiple Bla g 2 mutants were expressed in Pichia pastoris and purified. The triple mutant K132A/K251A/F162Y showed an ∼100-fold reduced capacity to bind IgE, while preserving the native molecular fold, as proven by x-ray crystallography. This mutant was still able to induce mast cell release. T-cell responses were assessed by analyzing Th1/Th2 cytokine production and the CD4(+) T-cell phenotype in peripheral blood mononuclear cell cultures. Although T-cell activating capacity was similar for the KKF mutant and Bla g 2 based on CD25 expression, the KKF mutant was a weaker inducer of the Th2 cytokine IL-13. Furthermore, this mutant induced IL-10 from a non-T-cell source at higher levels that those induced by Bla g 2. Our findings demonstrate that a rational design of site-directed mutagenesis was effective in producing a mutant with only 3 amino acid substitutions that maintained the same fold as wild type Bla g 2. These residues, which were involved in IgE antibody binding, endowed Bla g 2 with a T-cell modulatory capacity. The antigenic analysis of Bla g 2 will be useful for the subsequent development of recombinant allergen vaccines.


Assuntos
Alérgenos/química , Ácido Aspártico Endopeptidases/química , Baratas/química , Proteínas de Insetos/química , Alérgenos/imunologia , Animais , Anticorpos Monoclonais/imunologia , Ácido Aspártico Endopeptidases/imunologia , Asma/etiologia , Linfócitos T CD4-Positivos/citologia , Cristalografia por Raios X , Epitopos de Linfócito T/química , Humanos , Imunoglobulina E/imunologia , Proteínas de Insetos/imunologia , Mutagênese , Mutação , Pichia , Ligação Proteica , Conformação Proteica , Células Th1/citologia , Células Th2/citologia
3.
J Allergy Clin Immunol ; 136(1): 29-37.e10, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26145985

RESUMO

Current knowledge of molecules involved in immunology and allergic disease results from the significant contributions of x-ray crystallography, a discipline that just celebrated its 100th anniversary. The histories of allergens and x-ray crystallography are intimately intertwined. The first enzyme structure to be determined was lysozyme, also known as the chicken food allergen Gal d 4. Crystallography determines the exact 3-dimensional positions of atoms in molecules. Structures of molecular complexes in the disciplines of immunology and allergy have revealed the atoms involved in molecular interactions and mechanisms of disease. These complexes include peptides presented by MHC class II molecules, cytokines bound to their receptors, allergen-antibody complexes, and innate immune receptors with their ligands. The information derived from crystallographic studies provides insights into the function of molecules. Allergen function is one of the determinants of environmental exposure, which is essential for IgE sensitization. Proteolytic activity of allergens or their capacity to bind LPSs can also contribute to allergenicity. The atomic positions define the molecular surface that is accessible to antibodies. In turn, this surface determines antibody specificity and cross-reactivity, which are important factors for the selection of allergen panels used for molecular diagnosis and the interpretation of clinical symptoms. This review celebrates the contributions of x-ray crystallography to clinical immunology and allergy, focusing on new molecular perspectives that influence the diagnosis and treatment of allergic diseases.


Assuntos
Alérgenos/química , Alergia e Imunologia/tendências , Cristalografia por Raios X/estatística & dados numéricos , Hipersensibilidade/imunologia , Alérgenos/ultraestrutura , Alergia e Imunologia/história , Animais , Cristalografia por Raios X/história , História do Século XX , História do Século XXI , Humanos , Hipersensibilidade/diagnóstico , Imunização , Imunoglobulina E/metabolismo , Conformação Molecular , Ligação Proteica
4.
Acta Crystallogr D Biol Crystallogr ; 71(Pt 10): 2109-18, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26457434

RESUMO

The crystal structures of two constructs of RC1339/APRc from Rickettsia conorii, consisting of either residues 105-231 or 110-231 followed by a His tag, have been determined in three different crystal forms. As predicted, the fold of a monomer of APRc resembles one-half of the mandatory homodimer of retroviral pepsin-like aspartic proteases (retropepsins), but the quaternary structure of the dimer of APRc differs from that of the canonical retropepsins. The observed dimer is most likely an artifact of the expression and/or crystallization conditions since it cannot support the previously reported enzymatic activity of this bacterial aspartic protease. However, the fold of the core of each monomer is very closely related to the fold of retropepsins from a variety of retroviruses and to a single domain of pepsin-like eukaryotic enzymes, and may represent a putative common ancestor of monomeric and dimeric aspartic proteases.


Assuntos
Ácido Aspártico Proteases/química , Proteínas de Bactérias/química , Pepsina A/química , Rickettsia conorii/química , Cristalografia por Raios X , Conformação Proteica , Multimerização Proteica
5.
Curr Allergy Asthma Rep ; 15(8): 506, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25750181

RESUMO

Allergy diagnosis is based on the patient's clinical history and can be strengthened by tests that confirm the origin of sensitization. In the past 25 years, these tests have evolved from the exclusive in vivo or in vitro use of allergen extracts, to complementary molecular-based diagnostics that rely on in vitro measurements of IgE reactivity to individual allergens. For this to occur, an increase in our understanding of the molecular structure of allergens, largely due to the development of technologies such as molecular cloning and expression of recombinant allergens, X-ray crystallography, or nuclear magnetic resonance (NMR), has been essential. New in vitro microarray or multiplex systems are now available to measure IgE against a selected panel of purified natural or recombinant allergens. The determination of the three-dimensional structure of allergens has facilitated detailed molecular studies, including the analysis of antigenic determinants for diagnostic purposes.


Assuntos
Alérgenos/imunologia , Epitopos/imunologia , Animais , Humanos , Hipersensibilidade/diagnóstico , Hipersensibilidade/imunologia , Índice de Gravidade de Doença
6.
Curr Res Struct Biol ; 7: 100128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38304146

RESUMO

Plasmodium species are causative agents of malaria, a disease that is a serious global health concern. FDA-approved HIV-1 protease inhibitors (HIV-1 PIs) have been reported to be effective in reducing the infection by Plasmodium parasites in the population co-infected with both HIV-1 and malaria. However, the mechanism of HIV-1 PIs in mitigating Plasmodium pathogenesis during malaria/HIV-1 co-infection is not fully understood. In this study we demonstrate that HIV-1 drugs ritonavir (RTV) and lopinavir (LPV) exhibit the highest inhibition activity against plasmepsin II (PMII) and plasmepsin X (PMX) of P. falciparum. Crystal structures of the complexes of PMII with both drugs have been determined. The inhibitors interact with PMII via multiple hydrogen bonding and hydrophobic interactions. The P4 moiety of RTV forms additional interactions compared to LPV and exhibits conformational flexibility in a large S4 pocket of PMII. Our study is also the first to report inhibition of P. falciparum PMX by RTV and the mode of binding of the drug to the PMX active site. Analysis of the crystal structures implies that PMs can accommodate bulkier groups of these inhibitors in their S4 binding pockets. Structurally similar active sites of different vacuolar and non-vacuolar PMs suggest the potential of HIV-1 PIs in targeting these enzymes with differential affinities. Our structural investigations and biochemical data emphasize PMs as crucial targets for repurposing HIV-1 PIs as antimalarial drugs.

8.
Biochemistry ; 52(12): 2148-56, 2013 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-23448527

RESUMO

CrataBL, a protein isolated from Crataeva tapia bark, which is both a serine protease inhibitor and a lectin, has been previously shown to exhibit a number of interesting biological properties, including anti-inflammatory, analgesic, antitumor, and insecticidal activities. Using a glycan array, we have now shown that only sulfated carbohydrates are effectively bound by CrataBL. Because this protein was recently shown to delay clot formation by impairing the intrinsic pathway of the coagulation cascade, we considered that its natural ligand might be heparin. Heparin is a glycosaminoglycan (GAG) that interacts with a number of proteins, including thrombin and antithrombin III, which have a critical, essential pharmacological role in regulating blood coagulation. We have thus employed surface plasmon resonance to improve our understanding of the binding interaction between the heparin polysaccharide and CrataBL. Kinetic analysis shows that CrataBL displays strong heparin binding affinity (KD = 49 nM). Competition studies using different size heparin-derived oligosaccharides showed that the binding of CrataBL to heparin is chain length-dependent. Full chain heparin with 40 saccharides or large oligosaccharides, having 16-18 saccharide residues, show strong binding affinity for CrataBL. Heparin-derived disaccharides through tetradecasaccharides show considerably lower binding affinity. Other highly sulfated GAGs, including chondroitin sulfate E and dermatan 4,6-disulfate, showed CrataBL binding affinity comparable to that of heparin. Less highly sulfated GAGs, heparan sulfate, chondroitin sulfate A and C, and dermatan sulfate displayed modest binding affinity as did chondroitin sulfate D. Studies using chemically modified heparin show that N-sulfo and 6-O-sulfo groups on heparin are essential for CrataBL-heparin interaction.


Assuntos
Capparaceae/metabolismo , Glicosaminoglicanos/metabolismo , Heparina/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Ligação Competitiva , Capparaceae/genética , Glicosaminoglicanos/química , Heparina/química , Cinética , Modelos Moleculares , Dados de Sequência Molecular , Proteínas de Plantas/genética , Ligação Proteica , Conformação Proteica , Ressonância de Plasmônio de Superfície
9.
Biochim Biophys Acta ; 1824(1): 207-23, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21540129

RESUMO

Plasmepsins (PMs) are pepsin-like aspartic proteases present in different species of parasite Plasmodium. Four Plasmodium spp. (P. vivax, P. ovale, P. malariae, and the most lethal P. falciparum) are mainly responsible for causing human malaria that affects millions worldwide. Due to the complexity and rate of parasite mutation coupled with regional variations, and the emergence of P. falciparum strains which are resistant to antimalarial agents such as chloroquine and sulfadoxine/pyrimethamine, there is constant pressure to find new and lasting chemotherapeutic drug therapies. Since many proteases represent therapeutic targets and PMs have been shown to play an important role in the survival of parasite, these enzymes have recently been identified as promising targets for the development of novel antimalarial drugs. The genome of P. falciparum encodes 10 PMs (PMI, PMII, PMIV-X and histo-aspartic protease (HAP)), 4 of which (PMI, PMII, PMIV and HAP) reside within the food vacuole, are directly involved in degradation of human hemoglobin, and share 50-79% amino acid sequence identity. This review focuses on structural studies of only these four enzymes, including their orthologs in other Plasmodium spp.. Almost all original crystallographic studies were performed with PMII, but more recent work on PMIV, PMI, and HAP resulted in a more complete picture of the structure-function relationship of vacuolar PMs. Many structures of inhibitor complexes of vacuolar plasmepsins, as well as their zymogens, have been reported in the last 15 years. Information gained by such studies will be helpful for the development of better inhibitors that could become a new class of potent antimalarial drugs. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.


Assuntos
Ácido Aspártico Endopeptidases/química , Vacúolos/enzimologia , Sequência de Aminoácidos , Animais , Ácido Aspártico Endopeptidases/antagonistas & inibidores , Ácido Aspártico Endopeptidases/metabolismo , Ácido Aspártico Endopeptidases/fisiologia , Humanos , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Inibidores de Proteases/química , Inibidores de Proteases/metabolismo , Inibidores de Proteases/farmacologia , Conformação Proteica , Homologia de Sequência de Aminoácidos , Relação Estrutura-Atividade , Vacúolos/química , Vacúolos/metabolismo
10.
J Immunol ; 186(1): 333-40, 2011 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-21123808

RESUMO

The crystal structure of a murine mAb, 4C3, that binds to the C-terminal lobe of the cockroach allergen Bla g 2 has been solved at 1.8 Å resolution. Binding of 4C3 involves different types of molecular interactions with its epitope compared with those with the mAb 7C11, which binds to the N-terminal lobe of Bla g 2. We found that the 4C3 surface epitope on Bla g 2 includes a carbohydrate moiety attached to Asn(268) and that a large number of Ag-Ab contacts are mediated by water molecules and ions, most likely zinc. Ab binding experiments conducted with an enzymatically deglycosylated Bla g 2 and a N268Q mutant showed that the carbohydrate contributes, without being essential, to the Bla g 2-4C3 mAb interaction. Inhibition of IgE Ab binding by the mAb 4C3 shows a correlation of the structurally defined epitope with reactivity with human IgE. Site-directed mutagenesis of the 4C3 mAb epitope confirmed that the amino acids Lys(251), Glu(233), and Ile(199) are important for the recognition of Bla g 2 by the 4C3 mAb. The results show the relevance of x-ray crystallographic studies of allergen-Ab complexes to identify conformational epitopes that define the antigenic surface of Bla g 2.


Assuntos
Acetilglucosamina/metabolismo , Alérgenos/metabolismo , Anticorpos Monoclonais/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Baratas/imunologia , Acetilglucosamina/química , Acetilglucosamina/genética , Alérgenos/química , Alérgenos/genética , Animais , Anticorpos Monoclonais/química , Reações Antígeno-Anticorpo , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/genética , Cristalografia por Raios X , Glicosilação , Camundongos , Mutagênese Sítio-Dirigida , Ligação Proteica/imunologia , Conformação Proteica
11.
PLoS Pathog ; 6(11): e1001182, 2010 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21085615

RESUMO

The conserved internal trimeric coiled-coil of the N-heptad repeat (N-HR) of HIV-1 gp41 is transiently exposed during the fusion process by forming a pre-hairpin intermediate, thus representing an attractive target for the design of fusion inhibitors and neutralizing antibodies. In previous studies we reported a series of broadly neutralizing mini-antibodies derived from a synthetic naïve human combinatorial antibody library by panning against a mimetic of the trimeric N-HR coiled coil, followed by affinity maturation using targeted diversification of the CDR-H2 loop. Here we report crystal structures of the N-HR mimetic 5-Helix with two Fabs that represent the extremes of this series: Fab 8066 is broadly neutralizing across a wide panel of B and C type HIV-1 viruses, whereas Fab 8062 is non-neutralizing. The crystal structures reveal important differences in the conformations of the CDR-H2 loops in the complexes that propagate into other regions of the antigen-antibody interface, and suggest that both neutralization properties and affinity for the target can be attributed, at least in part, to the differences in the interactions of the CDR-H2 loops with the antigen. Furthermore, modeling of the complex of an N-HR trimer with three Fabs suggests that the CDR-H2 loop may be involved in close intermolecular contacts between neighboring antibody molecules, and that such contacts may hinder the formation of complexes between the N-HR trimer and more than one antibody molecule depending on the conformation of the bound CDR-H2 loop which is defined by its interactions with antigen. Comparison with the crystal structure of the complex of 5-Helix with another neutralizing monoclonal antibody known as D5, derived using an entirely different antibody library and panning procedure, reveals remarkable convergence in the optimal sequence and conformation of the CDR-H2 loop.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Anti-HIV/imunologia , Proteína gp41 do Envelope de HIV/química , Proteína gp41 do Envelope de HIV/imunologia , HIV-1/imunologia , Sequência de Aminoácidos , Anticorpos Monoclonais/metabolismo , Anticorpos Neutralizantes/metabolismo , Cristalografia por Raios X , Anticorpos Anti-HIV/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , HIV-1/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Testes de Neutralização , Conformação Proteica , Homologia de Sequência de Aminoácidos
12.
J Mol Biol ; 434(7): 167504, 2022 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-35183556

RESUMO

Lon proteases, members of the AAA+ superfamily of enzymes, are key components of the protein quality control system in bacterial cells, as well as in the mitochondria and other specialized organelles of higher organisms. These enzymes have been subject of extensive biochemical and structural investigations, resulting in 72 crystal and solution structures, including structures of the individual domains, multi-domain constructs, and full-length proteins. However, interpretation of the latter structures still leaves some questions unanswered. Based on their amino acid sequence and details of their structure, Lon proteases can be divided into at least three subfamilies, designated as LonA, LonB, and LonC. Protomers of all Lons are single-chain polypeptides and contain two functional domains, ATPase and protease. The LonA enzymes additionally include a large N-terminal region, and different Lons may also include non-conserved inserts in the principal domains. These ATP-dependent proteases function as homohexamers, in which unfolded substrates are translocated to a large central chamber where they undergo proteolysis by a processive mechanism. X-ray crystal structures provided high-resolution models which verified that Lons are hydrolases with the rare Ser-Lys catalytic dyad. Full-length LonA enzymes have been investigated by cryo-electron microscopy (cryo-EM), providing description of the functional enzyme at different stages of the catalytic cycle, indicating extensive flexibility of their N-terminal domains, and revealing insights into the substrate translocation mechanism. Structural studies of Lon proteases provide an interesting case for symbiosis of X-ray crystallography and cryo-EM, currently the two principal techniques for determination of macromolecular structures.


Assuntos
Protease La , Proteases Dependentes de ATP/metabolismo , Adenosina Trifosfatases/metabolismo , Sequência de Aminoácidos , Microscopia Crioeletrônica , Cristalografia por Raios X , Protease La/química , Protease La/classificação , Protease La/metabolismo
13.
Protein Sci ; 31(4): 882-899, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35048450

RESUMO

Plasmodium falciparum plasmepsin X (PfPMX), involved in the invasion and egress of this deadliest malarial parasite, is essential for its survival and hence considered as an important drug target. We report the first crystal structure of PfPMX zymogen containing a novel fold of its prosegment. A unique twisted loop from the prosegment and arginine 244 from the mature enzyme is involved in zymogen inactivation; such mechanism, not previously reported, might be common for apicomplexan proteases similar to PfPMX. The maturation of PfPMX zymogen occurs through cleavage of its prosegment at multiple sites. Our data provide thorough insights into the mode of binding of a substrate and a potent inhibitor 49c to PfPMX. We present molecular details of inactivation, maturation, and inhibition of PfPMX that should aid in the development of potent inhibitors against pepsin-like aspartic proteases from apicomplexan parasites.


Assuntos
Ácido Aspártico Endopeptidases , Precursores Enzimáticos , Plasmodium falciparum , Proteínas de Protozoários , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/metabolismo , Precursores Enzimáticos/química , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/química
14.
Biochemistry ; 50(41): 8862-79, 2011 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-21928835

RESUMO

Histo-aspartic protease (HAP) from Plasmodium falciparum is a promising target for the development of novel antimalarial drugs. The sequence of HAP is highly similar to those of pepsin-like aspartic proteases, but one of the two catalytic aspartates, Asp32, is replaced with histidine. Crystal structures of the truncated zymogen of HAP and of the complex of the mature enzyme with inhibitor KNI-10395 have been determined at 2.1 and 2.5 Å resolution, respectively. As in other proplasmepsins, the propeptide of the zymogen interacts with the C-terminal domain of the enzyme, forcing the N- and C-terminal domains apart, thereby separating His32 and Asp215 and preventing formation of the mature active site. In the inhibitor complex, the enzyme forms a tight domain-swapped dimer, not previously seen in any aspartic proteases. The inhibitor is found in an unprecedented conformation resembling the letter U, stabilized by two intramolecular hydrogen bonds. Surprisingly, the location and conformation of the inhibitor are similar to those of the fragment of helix 2 comprising residues 34p-38p in the prosegments of the zymogens of gastric aspartic proteases; a corresponding helix assumes a vastly different orientation in proplasmepsins. Each inhibitor molecule is in contact with two molecules of HAP, interacting with the carboxylate group of the catalytic Asp215 of one HAP protomer through a water molecule, while also making a direct hydrogen bond to Glu278A' of the other protomer. A comparison of the shifts in the positions of the catalytic residues in the inhibitor complex presented here with those published previously gives further hints regarding the enzymatic mechanism of HAP.


Assuntos
Ácido Aspártico Proteases/química , Plasmodium falciparum/enzimologia , Animais , Ácido Aspártico/química , Domínio Catalítico , Cristalização , Cristalografia por Raios X/métodos , Escherichia coli/metabolismo , Histidina/química , Humanos , Conformação Molecular , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/química , Suínos
15.
J Struct Biol ; 175(1): 73-84, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21521654

RESUMO

Plasmepsin I (PMI) is one of the four vacuolar pepsin-like proteases responsible for hemoglobin degradation by the malarial parasite Plasmodium falciparum, and the only one with no crystal structure reported to date. Due to substantial functional redundancy of these enzymes, lack of inhibition of even a single plasmepsin can defeat efforts in creating effective antiparasitic agents. We have now solved crystal structures of the recombinant PMI as apoenzyme and in complex with the potent peptidic inhibitor, KNI-10006, at the resolution of 2.4 and 3.1Å, respectively. The apoenzyme crystallized in the orthorhombic space group P2(1)2(1)2(1) with two molecules in the asymmetric unit and the structure has been refined to the final R-factor of 20.7%. The KNI-10006 bound enzyme crystallized in the tetragonal space group P4(3) with four molecules in the asymmetric unit and the structure has been refined to the final R-factor of 21.1%. In the PMI-KNI-10006 complex, the inhibitors were bound identically to all four enzyme molecules, with the opposite directionality of the main chain of KNI-10006 relative to the direction of the enzyme substrates. Such a mode of binding of inhibitors containing an allophenylnorstatine-dimethylthioproline insert in the P1-P1' positions, previously reported in a complex with PMIV, demonstrates the importance of satisfying the requirements for the proper positioning of the functional groups in the mechanism-based inhibitors towards the catalytic machinery of aspartic proteases, as opposed to binding driven solely by the specificity of the individual enzymes. A comparison of the structure of the PMI-KNI-10006 complex with the structures of other vacuolar plasmepsins identified the important differences between them and may help in the design of specific inhibitors targeting the individual enzymes.


Assuntos
Ácido Aspártico Endopeptidases/química , Plasmodium falciparum/enzimologia , Proteínas de Protozoários/química , Proteínas Recombinantes/química , Sequência de Aminoácidos , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , Inibidores Enzimáticos/síntese química , Inibidores Enzimáticos/química , Ligação de Hidrogênio , Dados de Sequência Molecular , Oligopeptídeos/síntese química , Oligopeptídeos/química , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Alinhamento de Sequência
16.
Acta Crystallogr D Struct Biol ; 77(Pt 8): 1084-1098, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-34342281

RESUMO

Structures of BbKI, a recombinant Kunitz-type serine protease inhibitor from Bauhinia bauhinioides, complexed with human kallikrein 4 (KLK4) were determined at medium-to-high resolution in four crystal forms (space groups P3121, P6522, P21 and P61). Although the fold of the protein was virtually identical in all of the crystals, some significant differences were observed in the conformation of Arg64 of BbKI, the residue that occupies the S1 pocket in KLK4. Whereas this residue exhibited two orientations in the highest resolution structure (P3121), making either a canonical trypsin-like interaction with Asp189 of KLK4 or an alternate interaction, only a single alternate orientation was observed in the other three structures. A neighboring disulfide, Cys191-Cys220, was partially or fully broken in all KLK4 structures. Four variants of BbKI in which Arg64 was replaced by Met, Phe, Ala and Asp were expressed and crystallized, and their structures were determined in complex with KLK4. Structures of the Phe and Met variants complexed with bovine trypsin and of the Phe variant complexed with α-chymotrypsin were also determined. Although the inhibitory potency of these variant forms of BbKI was lowered by up to four orders of magnitude, only small changes were seen in the vicinity of the mutated residues. Therefore, a totality of subtle differences in KLK4-BbKI interactions within the fully extended interface in the structures of these variants might be responsible for the observed effect. Screening of the BbKI variants against a panel of serine proteases revealed an altered pattern of inhibitory specificity, which was shifted towards that of chymotrypsin-like proteases for the hydrophobic Phe and Met P1 substitutions. This work reports the first structures of plant Kunitz inhibitors with S1-family serine proteases other than trypsin, as well as new insights into the specificity of inhibition of medically relevant kallikreins.


Assuntos
Bauhinia/metabolismo , Calicreínas/metabolismo , Proteínas de Plantas/metabolismo , Calicreínas/química , Mutação , Proteínas de Plantas/química , Ligação Proteica
17.
FEBS J ; 288(2): 678-698, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-32385863

RESUMO

Plasmodium parasites that cause malaria produce plasmepsins (PMs), pepsin-like aspartic proteases that are important antimalarial drug targets due to their role in host hemoglobin degradation. The enzymes are synthesized as inactive zymogens (pro-PMs), and the mechanism of their conversion to the active, mature forms has not been clearly elucidated. Our structural investigations of vacuolar pro-PMs with truncated prosegment (pro-tPMs) reveal that the formation of the S-shaped dimer is their innate property. Further structural studies, biochemical analysis, and molecular dynamics simulations indicate that disruption of the Tyr-Asp loop (121p-4), coordinated with the movement of the loop L1 (237-247) and helix H2 (101p-113p), is responsible for the extension of the pro-mature region (harboring the cleavage site). Consequently, under acidic pH conditions, these structural changes result in the dissociation of the dimers to monomers and the protonation of the residues in the prosegment prompts its unfolding. Subsequently, we demonstrated that the active site of the monomeric pro-tPMs with the unfolded prosegment is accessible for peptide substrate binding; in contrast, the active site is blocked in folded prosegment form of pro-tPMs. Thus, we propose a novel mechanism of auto-activation of vacuolar pro-tPMs that under acidic conditions can form a catalytically competent active site. One monomer cleaves the prosegment of the other one through a trans-activation process, resulting in formation of mature enzyme. As a result, once a mature enzyme is generated, it leads to the complete conversion of all the inactive pro-tPMs to their mature form. DATABASE: Atomic coordinates and structure factors have been submitted in the Protein Data Bank (PDB) under the PDB IDs 6KUB, 6KUC, and 6KUD.


Assuntos
Ácido Aspártico Endopeptidases/metabolismo , Plasmodium falciparum/enzimologia , Sequência de Aminoácidos , Ácido Aspártico Endopeptidases/química , Ácido Aspártico Endopeptidases/genética , Domínio Catalítico , Concentração de Íons de Hidrogênio , Modelos Moleculares , Conformação Proteica , Alinhamento de Sequência
18.
Acta Crystallogr D Biol Crystallogr ; 66(Pt 8): 865-73, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20693685

RESUMO

The structure of a recombinant construct consisting of residues 1-245 of Escherichia coli Lon protease, the prototypical member of the A-type Lon family, is reported. This construct encompasses all or most of the N-terminal domain of the enzyme. The structure was solved by SeMet SAD to 2.6 A resolution utilizing trigonal crystals that contained one molecule in the asymmetric unit. The molecule consists of two compact subdomains and a very long C-terminal alpha-helix. The structure of the first subdomain (residues 1-117), which consists mostly of beta-strands, is similar to that of the shorter fragment previously expressed and crystallized, whereas the second subdomain is almost entirely helical. The fold and spatial relationship of the two subdomains, with the exception of the C-terminal helix, closely resemble the structure of BPP1347, a 203-amino-acid protein of unknown function from Bordetella parapertussis, and more distantly several other proteins. It was not possible to refine the structure to satisfactory convergence; however, since almost all of the Se atoms could be located on the basis of their anomalous scattering the correctness of the overall structure is not in question. The structure reported here was also compared with the structures of the putative substrate-binding domains of several proteins, showing topological similarities that should help in defining the binding sites used by Lon substrates.


Assuntos
Escherichia coli/enzimologia , Fragmentos de Peptídeos/química , Protease La/química , Bordetella parapertussis/enzimologia , Cristalografia por Raios X , Modelos Moleculares , Estrutura Terciária de Proteína , Homologia Estrutural de Proteína
19.
Acta Crystallogr D Struct Biol ; 75(Pt 1): 56-69, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30644845

RESUMO

Structures of a recombinant Kunitz-type serine protease inhibitor from Bauhinia bauhinioides (BbKI) complexed with bovine trypsin were determined in two crystal forms. The crystal structure with the L55R mutant of BbKI was determined in space group P64 at 1.94 Šresolution and that with native BbKI in the monoclinic space group P21 at 3.95 Šresolution. The asymmetric unit of the latter crystals contained 44 independent complexes, thus representing one of the largest numbers of independent objects deposited in the Protein Data Bank. Additionally, the structure of the complex with native BbKI was determined at 2.0 Šresolution from P64 crystals isomorphous to those of the mutant. Since BbKI has previously been found to be a potent inhibitor of the trypsin-like plasma kallikrein, it was also tested against several tissue kallikreins. It was found that BbKI is a potent inhibitor of human tissue kallikrein 4 (KLK4) and the chymotrypsin-like human tissue kallikrein 7 (KLK7). Structures of BbKI complexed with the catalytic domain of human plasma kallikrein were modeled, as well as those with KLK4 and KLK7, and the structures were analyzed in order to identify the interactions that are responsible for inhibitory potency.


Assuntos
Bauhinia/química , Calicreínas/química , Proteínas de Plantas/química , Tripsina/química , Animais , Bovinos , Cristalografia por Raios X , Humanos , Calicreínas/antagonistas & inibidores , Modelos Moleculares
20.
FEBS Open Bio ; 9(9): 1536-1551, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31237118

RESUMO

LonA proteases and ClpB chaperones are key components of the protein quality control system in bacterial cells. LonA proteases form a unique family of ATPases associated with diverse cellular activities (AAA+ ) proteins due to the presence of an unusual N-terminal region comprised of two domains: a ß-structured N domain and an α-helical domain, including the coiled-coil fragment, which is referred to as HI(CC). The arrangement of helices in the HI(CC) domain is reminiscent of the structure of the H1 domain of the first AAA+ module of ClpB chaperones. It has been hypothesized that LonA proteases with a single AAA+ module may also contain a part of another AAA+ module, the full version of which is present in ClpB. Here, we established and tested the structural basis of this hypothesis using the known crystal structures of various fragments of LonA proteases and ClpB chaperones, as well as the newly determined structure of the Escherichia coli LonA fragment (235-584). The similarities and differences in the corresponding domains of LonA proteases and ClpB chaperones were examined in structural terms. The results of our analysis, complemented by the finding of a singular match in the location of the most conserved axial pore-1 loop between the LonA NB domain and the NB2 domain of ClpB, support our hypothesis that there is a structural and functional relationship between two coiled-coil fragments and implies a similar mechanism of engagement of the pore-1 loops in the AAA+ modules of LonAs and ClpBs.


Assuntos
Endopeptidase Clp/química , Endopeptidase Clp/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Protease La/química , Protease La/metabolismo , Modelos Moleculares , Conformação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA