Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sci Educ Technol ; 27(6): 566-580, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-31105416

RESUMO

Mobile applications (apps) for learning technical scientific content are becoming increasingly popular in educational settings. Neuroscience is often considered complex and challenging for most students to understand conceptually. iNeuron is a recently developed iOS app that teaches basic neuroscience in the context of a series of scaffolded challenges to create neural circuits and increase understanding of nervous system structure and function. In this study, four different ways to implement the app within a classroom setting were explored. The goal of the study was to determine the app's effectiveness under conditions closely approximating real-world use, and to evaluate whether collaborative play and student-driven navigational features contributed to its effectiveness. Students used the app either individually or in small groups, and used a version with either a fixed or variable learning sequence. Student performance on a pre- and post- neuroscience content assessment was analyzed and compared between students who used the app and a control group receiving standard instruction, and logged app data were analyzed. Significantly greater learning gains were found for all students who used the app compared to control. All four implementation modes were effective in producing student learning gains relative to controls, but did not differ in their effectiveness to one another. In addition, students demonstrated transfer of information learned in one context to another within the app. These results suggest that teacher-led neuroscience instruction can be effectively supported by a scaffolded, technology-based curriculum which can be implemented in multiple ways to enhance student learning.

2.
Neuroscientist ; 25(5): 394-407, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30895863

RESUMO

While neuroscience has elucidated the mechanisms underpinning learning and memory, accurate dissemination of this knowledge to teachers and educators has been limited. This review focuses on teacher professional development in neuroscience that harnessed the power of active-learning strategies and best educational practices resulting in increased teacher and student understanding of cognition and brain function. For teachers, the experience of learning a novel subject in an active manner enabled them to subsequently teach using similar strategies. Most important, participants viewed neuroscience as a frame for understanding why active-learning pedagogies work to engage and motivate students. Teachers themselves made connections applying neuroscience concepts to understand why learner-centered pedagogies are effective in promoting higher order thinking and deep learning in their students. Teachers planned and embraced pedagogies involving modeling, experimentation, discussion, analysis, and synthesis, increasing classroom cognitive engagement. Comprehending that everyone is in charge of changing their own brains is a tremendously powerful idea that may motivate science and non-science teachers to provide students opportunities to actively engage with content. Neuroscience courses for preservice and in-service teachers, provided as collaborations between scientists and teacher educators, can result in improved science education, pedagogy, and understanding of neuroscience.


Assuntos
Neurociências/educação , Capacitação de Professores , Humanos , Competência Profissional , Professores Escolares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA