Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Physiol Rev ; 97(2): 529-552, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28151425

RESUMO

The hypothesis that the small conducting airways were the major site of obstruction to airflow in normal lungs was introduced by Rohrer in 1915 and prevailed until Weibel introduced a quantitative method of studying lung anatomy in 1963. Green repeated Rohrer's calculations using Weibels new data in 1965 and found that the smaller conducting airways offered very little resistance to airflow. This conflict was resolved by seminal experiments conducted by Macklem and Mead in 1967, which confirmed that a small proportion of the total lower airways resistance is attributable to small airways <2 mm in diameter. Shortly thereafter, Hogg, Macklem, and Thurlbeck used this technique to show that small airways become the major site of obstruction in lungs affected by emphysema. These and other observations led Mead to write a seminal editorial in 1970 that postulated the small airways are a silent zone within normal lungs where disease can accumulate over many years without being noticed. This review provides a progress report since the 1970s on methods for detecting chronic obstructive pulmonary disease, the structural nature of small airways' disease, and the cellular and molecular mechanisms that are thought to underlie its pathogenesis.


Assuntos
Obstrução das Vias Respiratórias/complicações , Diagnóstico Precoce , Pulmão/patologia , Doença Pulmonar Obstrutiva Crônica/diagnóstico , Doença Pulmonar Obstrutiva Crônica/etiologia , Enfisema Pulmonar/complicações , Animais , Humanos , Tomografia Computadorizada por Raios X/métodos
2.
Am J Respir Crit Care Med ; 208(4): 472-486, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37406359

RESUMO

Rationale: Emerging data demonstrate that the smallest conducting airways, terminal bronchioles, are the early site of tissue destruction in chronic obstructive pulmonary disease (COPD) and are reduced by as much as 41% by the time someone is diagnosed with mild (Global Initiative for Chronic Obstructive Lung Disease [GOLD] stage 1) COPD. Objectives: To develop a single-cell atlas that describes the structural, cellular, and extracellular matrix alterations underlying terminal bronchiole loss in COPD. Methods: This cross-sectional study of 262 lung samples derived from 34 ex-smokers with normal lung function (n = 10) or GOLD stage 1 (n = 10), stage 2 (n = 8), or stage 4 (n = 6) COPD was performed to assess the morphology, extracellular matrix, single-cell atlas, and genes associated with terminal bronchiole reduction using stereology, micro-computed tomography, nonlinear optical microscopy, imaging mass spectrometry, and transcriptomics. Measurements and Main Results: The lumen area of terminal bronchioles progressively narrows with COPD severity as a result of the loss of elastin fibers within alveolar attachments, which was observed before microscopic emphysematous tissue destruction in GOLD stage 1 and 2 COPD. The single-cell atlas of terminal bronchioles in COPD demonstrated M1-like macrophages and neutrophils located within alveolar attachments and associated with the pathobiology of elastin fiber loss, whereas adaptive immune cells (naive, CD4, and CD8 T cells, and B cells) are associated with terminal bronchiole wall remodeling. Terminal bronchiole pathology was associated with the upregulation of genes involved in innate and adaptive immune responses, the interferon response, and the degranulation of neutrophils. Conclusions: This comprehensive single-cell atlas highlights terminal bronchiole alveolar attachments as the initial site of tissue destruction in centrilobular emphysema and an attractive target for disease modification.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Estudos Transversais , Microtomografia por Raio-X , Elastina , Pulmão , Asma/complicações
3.
Am J Respir Crit Care Med ; 205(1): 60-74, 2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34724391

RESUMO

Rationale: Fibrotic hypersensitivity pneumonitis (fHP) is an interstitial lung disease caused by sensitization to an inhaled allergen. Objectives: To identify the molecular determinants associated with progression of fibrosis. Methods: Nine fHP explant lungs and six unused donor lungs (as controls) were systematically sampled (4 samples/lung). According to microcomputed tomography measures, fHP cores were clustered into mild, moderate, and severe fibrosis groups. Gene expression profiles were assessed using weighted gene co-expression network analysis, xCell, gene ontology, and structure enrichment analysis. Gene expression of the prevailing molecular traits was also compared with idiopathic pulmonary fibrosis (IPF). The explant lung findings were evaluated in separate clinical fHP cohorts using tissue, BAL samples, and computed tomography scans. Measurements and Main Results: We found six molecular traits that associated with differential lung involvement. In fHP, extracellular matrix and antigen presentation/sensitization transcriptomic signatures characterized lung zones with only mild structural and histological changes, whereas signatures involved in honeycombing and B cells dominated the transcriptome in the most severely affected lung zones. With increasing disease severity, endothelial function was progressively lost, and progressive disruption in normal cellular homeostatic processes emerged. All six were also found in IPF, with largely similar associations with disease microenvironments. The molecular traits correlated with in vivo disease behavior in a separate clinical fHP cohort. Conclusions: We identified six molecular traits that characterize the morphological progression of fHP and associate with in vivo clinical behavior. Comparing IPF with fHP, the transcriptome landscape was determined considerably by local disease extent rather than by diagnosis alone.


Assuntos
Alveolite Alérgica Extrínseca/genética , Alveolite Alérgica Extrínseca/patologia , Pulmão/patologia , Transcriptoma , Adulto , Idoso , Alveolite Alérgica Extrínseca/diagnóstico , Estudos de Casos e Controles , Progressão da Doença , Feminino , Fibrose , Perfilação da Expressão Gênica , Marcadores Genéticos , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Índice de Gravidade de Doença
4.
Eur Respir J ; 59(5)2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34675046

RESUMO

RATIONALE: Peripheral airway obstruction is a key feature of chronic obstructive pulmonary disease (COPD), but the mechanisms of airway loss are unknown. This study aims to identify the molecular and cellular mechanisms associated with peripheral airway obstruction in COPD. METHODS: Ten explanted lung specimens donated by patients with very severe COPD treated by lung transplantation and five unused donor control lungs were sampled using systematic uniform random sampling (SURS), resulting in 240 samples. These samples were further examined by micro-computed tomography (CT), quantitative histology and gene expression profiling. RESULTS: Micro-CT analysis showed that the loss of terminal bronchioles in COPD occurs in regions of microscopic emphysematous destruction with an average airspace size of ≥500 and <1000 µm, which we have termed a "hot spot". Based on microarray gene expression profiling, the hot spot was associated with an 11-gene signature, with upregulation of pro-inflammatory genes and downregulation of inhibitory immune checkpoint genes, indicating immune response activation. Results from both quantitative histology and the bioinformatics computational tool CIBERSORT, which predicts the percentage of immune cells in tissues from transcriptomic data, showed that the hot spot regions were associated with increased infiltration of CD4 and CD8 T-cell and B-cell lymphocytes. INTERPRETATION: The reduction in terminal bronchioles observed in lungs from patients with COPD occurs in a hot spot of microscopic emphysema, where there is upregulation of IFNG signalling, co-stimulatory immune checkpoint genes and genes related to the inflammasome pathway, and increased infiltration of immune cells. These could be potential targets for therapeutic interventions in COPD.


Assuntos
Obstrução das Vias Respiratórias , Enfisema , Doença Pulmonar Obstrutiva Crônica , Enfisema Pulmonar , Bronquíolos/patologia , Enfisema/complicações , Humanos , Doença Pulmonar Obstrutiva Crônica/complicações , Microtomografia por Raio-X
5.
J Pathol ; 253(4): 351-354, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33368245

RESUMO

Due to the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pandemic, the world is currently facing high morbidity and mortality rates as well as severe disruption to normal societal and social structures. SARS-CoV-2 uses the ACE2 receptor for cellular entry. In a recent publication of The Journal of Pathology, Liu and coworkers highlight the effects of cigarette smoking on ACE2 expression in the respiratory epithelium. The authors studied the effects of acute cigarette smoke exposure in a murine model and confirmed their findings in human lung tissues and gene expression datasets. Their findings demonstrate that cigarette smoking increases ACE2 expression specifically at the apical surface of the airway epithelium. Smoking cessation resulted in lower ACE2 expression, with implications for attenuating the risk of transmission of the virus. The role of ACE2 expression in the development of COVID-19 symptoms is still under investigation, with conflicting results from experimental models on the role of ACE2 expression in SARS-CoV-2-induced lung injury. In this commentary, we highlight the implications and limitations of the study of Liu et al as well as future therapeutic strategies directed towards ACE2. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
COVID-19 , Fumar Cigarros , Animais , Expressão Gênica , Humanos , Camundongos , Peptidil Dipeptidase A/genética , Mucosa Respiratória , SARS-CoV-2 , Reino Unido
6.
Am J Respir Crit Care Med ; 204(9): 1048-1059, 2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34343057

RESUMO

Rationale: To improve disease outcomes in idiopathic pulmonary fibrosis (IPF), it is essential to understand its early pathophysiology so that it can be targeted therapeutically. Objectives: Perform three-dimensional assessment of the IPF lung microstructure using stereology and multiresolution computed tomography (CT) imaging. Methods: Explanted lungs from patients with IPF (n = 8) and donor control subjects (n = 8) were inflated with air and frozen. CT scans were used to assess large airways. Unbiased, systematic uniform random samples (n = 8/lung) were scanned with microCT for stereological assessment of small airways (count number, and measure airway wall and lumen area) and parenchymal fibrosis (volume fraction of tissue, alveolar surface area, and septal wall thickness). Measurements and Main Results: The total number of airways on clinical CT was greater in IPF lungs than control lungs (P < 0.01), owing to an increase in the wall (P < 0.05) and lumen area (P < 0.05) resulting in more visible airways with a lumen larger than 2 mm. In IPF tissue samples without microscopic fibrosis, assessed by the volume fraction of tissue using microCT, there was a reduction in the number of the terminal (P < 0.01) and transitional (P < 0.001) bronchioles, and an increase in terminal bronchiole wall area (P < 0.001) compared with control lungs. In IPF tissue samples with microscopic parenchymal fibrosis, terminal bronchioles had increased airway wall thickness (P < 0.05) and dilated airway lumens (P < 0.001) leading to honeycomb cyst formations. Conclusions: This study has important implications for the current thinking on how the lung tissue is remodeled in IPF and highlights small airways as a potential target to modify IPF outcomes.


Assuntos
Bronquíolos/diagnóstico por imagem , Bronquíolos/fisiopatologia , Diagnóstico Precoce , Fibrose Pulmonar Idiopática/diagnóstico , Fibrose Pulmonar Idiopática/fisiopatologia , Microtomografia por Raio-X/métodos , Idoso , Feminino , Humanos , Fibrose Pulmonar Idiopática/diagnóstico por imagem , Masculino , Pessoa de Meia-Idade
7.
Am J Physiol Lung Cell Mol Physiol ; 321(2): L377-L391, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34105356

RESUMO

Genome-wide association studies have shown that a gene variant in the Family with sequence similarity 13, member A (FAM13A) is strongly associated with reduced lung function and the appearance of respiratory symptoms in patients with chronic obstructive pulmonary disease (COPD). A key player in smoking-induced tissue injury and airway remodeling is the transforming growth factor-ß1 (TGF-ß1). To determine the role of FAM13A in TGF-ß1 signaling, FAM13A-/- airway epithelial cells were generated using CRISPR-Cas9, whereas overexpression of FAM13A was achieved using lipid nanoparticles. Wild-type (WT) and FAM13A-/- cells were treated with TGF-ß1, followed by gene and/or protein expression analyses. FAM13A-/- cells augmented TGF-ß1-induced increase in collagen type 1 (COL1A1), matrix metalloproteinase 2 (MMP2), expression compared with WT cells. This effect was mediated by an increase in ß-catenin (CTNNB1) expression in FAM13A-/- cells compared with WT cells after TGF-ß1 treatment. FAM13A overexpression was partially protective from TGF-ß1-induced COL1A1 expression. Finally, we showed that airway epithelial-specific FAM13A protein expression is significantly increased in patients with severe COPD compared with control nonsmokers, and negatively correlated with lung function. In contrast, ß-catenin (CTNNB1), which has previously been linked to be regulated by FAM13A, is decreased in the airway epithelium of smokers with COPD compared with non-COPD subjects. Together, our data showed that FAM13A may be protective from TGF-ß1-induced fibrotic response in the airway epithelium via sequestering CTNNB1 from its regulation on downstream targets. Therapeutic increase in FAM13A expression in the airway epithelium of smokers at risk for COPD, and those with mild COPD, may reduce the extent of airway tissue remodeling.


Assuntos
Remodelação das Vias Aéreas , Proteínas Ativadoras de GTPase/metabolismo , Doença Pulmonar Obstrutiva Crônica/metabolismo , Mucosa Respiratória/metabolismo , Fumar/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Adulto , Idoso , Linhagem Celular , Colágeno Tipo I/biossíntese , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Feminino , Proteínas Ativadoras de GTPase/genética , Regulação da Expressão Gênica , Humanos , Masculino , Metaloproteinase 2 da Matriz/biossíntese , Metaloproteinase 2 da Matriz/genética , Pessoa de Meia-Idade , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/patologia , Mucosa Respiratória/patologia , Fumar/genética , Fumar/patologia , Fator de Crescimento Transformador beta1/genética , beta Catenina/biossíntese , beta Catenina/genética
8.
J Pathol ; 250(5): 624-635, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31691283

RESUMO

Chronic obstructive pulmonary disease (COPD) is a devastating lung disease with a high personal and societal burden. Exposure to toxic particles and gases, including cigarette smoke, is the main risk factor for COPD. Together with smoking cessation, current treatment strategies of COPD aim to improve symptoms and prevent exacerbations, but there is no disease-modifying treatment. The biggest drawback of today's COPD treatment regimen is the 'one size fits all' pharmacological intervention, mainly based on disease severity and symptoms and not the individual's disease pathology. To halt the worrying increase in the burden of COPD, disease management needs to be advanced with a focus on personalized treatment. The main pathological feature of COPD includes a chronic and abnormal inflammatory response within the lungs, which results in airway and alveolar changes in the lung as reflected by (small) airways disease and emphysema. Here we discuss recent developments related to the abnormal inflammatory response, ECM and age-related changes, structural changes in the small airways and the role of sex-related differences, which are all relevant to explain the individual differences in the disease pathology of COPD and improve disease endotyping. Furthermore, we will discuss the most recent developments of new treatment strategies using biologicals to target specific pathological features or disease endotypes of COPD. © 2020 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Pulmão/patologia , Medicina de Precisão , Doença Pulmonar Obstrutiva Crônica/patologia , Enfisema Pulmonar/patologia , Humanos , Pneumopatias/etiologia , Pneumopatias/patologia , Enfisema Pulmonar/etiologia , Nicotiana/efeitos adversos
9.
Eur Respir J ; 55(2)2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31727692

RESUMO

Asthma and chronic obstructive pulmonary disease (COPD) cause significant morbidity and mortality worldwide. In the context of disease pathogenesis, both asthma and COPD involve chronic inflammation of the lung and are characterised by the abnormal release of inflammatory cytokines, dysregulated immune cell activity and remodelling of the airways. To date, current treatments still only manage symptoms and do not reverse the primary disease processes. In recent work, interleukin (IL)-1α and IL-1ß have been suggested to play important roles in both asthma and COPD. In this review, we summarise overwhelming pre-clinical evidence for dysregulated signalling of IL-1α and IL-1ß contributing to disease pathogenesis and discuss the paradox of IL-1 therapeutic studies in asthma and COPD. This is particularly important given recent completed and ongoing clinical trials with IL-1 biologics that have had varying degrees of failure and success as therapeutics for disease modification in asthma and COPD.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Asma/tratamento farmacológico , Humanos , Interleucina-8 , Pulmão , Doença Pulmonar Obstrutiva Crônica/tratamento farmacológico , Doença Pulmonar Obstrutiva Crônica/etiologia
10.
Am J Pathol ; 189(8): 1536-1546, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31125551

RESUMO

Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in fibrillin-1 (Fbn1). Although aortic rupture is the major cause of mortality in MFS, patients also experience pulmonary complications, which are poorly understood. Loss of basal nitric oxide (NO) production and vascular integrity has been implicated in MFS aortic root disease, yet their contribution to lung complications remains unknown. Because of its capacity to potentiate the vasodilatory NO/cyclic guanylate monophosphate signaling pathway, we assessed whether the phosphodiesterase-5 inhibitor, sildenafil (SIL), could attenuate aortic root remodeling and emphysema in a mouse model of MFS. Despite increasing NO-dependent vasodilation, SIL unexpectedly elevated mean arterial blood pressure, failed to inhibit MFS aortic root dilation, and exacerbated elastic fiber fragmentation. In the lung, early pulmonary artery dilation observed in untreated MFS mice was delayed by SIL treatment, and the severe emphysema-like alveolar destruction was prevented. In addition, improvements in select parameters of lung function were documented. Subsequent microarray analyses showed changes to gene signatures involved in the inflammatory response in the MFS lung treated with SIL, without significant down-regulation of connective tissue or transforming growth factor-ß signaling genes. Because phosphodiesterase-5 inhibition leads to improved lung histopathology and function, the effects of SIL against emphysema warrant further investigation in the settings of MFS despite limited efficacy on aortic root remodeling.


Assuntos
Síndrome de Marfan , Artéria Pulmonar/fisiopatologia , Enfisema Pulmonar , Citrato de Sildenafila/farmacologia , Vasodilatação/efeitos dos fármacos , Animais , Feminino , Masculino , Síndrome de Marfan/complicações , Síndrome de Marfan/tratamento farmacológico , Síndrome de Marfan/fisiopatologia , Camundongos , Camundongos Mutantes , Enfisema Pulmonar/etiologia , Enfisema Pulmonar/fisiopatologia , Enfisema Pulmonar/prevenção & controle
11.
Am J Respir Crit Care Med ; 200(4): 431-443, 2019 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-30950644

RESUMO

Rationale: Histologic stains have been used as the gold standard to visualize extracellular matrix (ECM) changes associated with airway remodeling in asthma, yet they provide no information on the biochemical and structural characteristics of the ECM, which are vital to understanding alterations in tissue function.Objectives: To demonstrate the use of nonlinear optical microscopy (NLOM) and texture analysis algorithms to image fibrillar collagen (second harmonic generation) and elastin (two-photon excited autofluorescence), to obtain biochemical and structural information on the remodeled ECM environment in asthma.Methods: Nontransplantable donor lungs from donors with asthma (n = 13) and control (n = 12) donors were used for the assessment of airway collagen and elastin fibers by NLOM, and extraction of lung fibroblasts for in vitro experiments.Measurements and Main Results: Fibrillar collagen is not only increased but also highly disorganized and fragmented within large and small asthmatic airways compared with control subjects, using NLOM imaging. Furthermore, such structural alterations are present in pediatric and adult donors with asthma, irrespective of fatal disease. In vitro studies demonstrated that asthmatic airway fibroblasts are deficient in their packaging of fibrillar collagen-I and express less decorin, important for collagen fibril packaging. Packaging of collagen fibrils was found to be more disorganized in asthmatic airways compared with control subjects, using transmission electron microscopy.Conclusions: NLOM imaging enabled the structural assessment of the ECM, and the data suggest that airway remodeling in asthma involves the progressive accumulation of disorganized fibrillar collagen by airway fibroblasts. This study highlights the future potential clinical application of NLOM to assess airway remodeling in vivo.


Assuntos
Remodelação das Vias Aéreas/fisiologia , Asma/metabolismo , Elastina/metabolismo , Colágenos Fibrilares/metabolismo , Fibroblastos/metabolismo , Pulmão/metabolismo , Adolescente , Adulto , Asma/patologia , Criança , Colágeno Tipo I/metabolismo , Decorina/metabolismo , Elastina/ultraestrutura , Matriz Extracelular , Feminino , Colágenos Fibrilares/ultraestrutura , Humanos , Técnicas In Vitro , Pulmão/citologia , Pulmão/ultraestrutura , Masculino , Microscopia Eletrônica de Transmissão , Microscopia Óptica não Linear , Adulto Jovem
14.
Am J Respir Cell Mol Biol ; 56(3): 291-299, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27788019

RESUMO

Limited in vivo models exist to investigate the lung airway epithelial role in repair, regeneration, and pathology of chronic lung diseases. Herein, we introduce a novel animal model in asthma-a xenograft system integrating a differentiating human asthmatic airway epithelium with an actively remodeling rodent mesenchyme in an immunocompromised murine host. Human asthmatic and nonasthmatic airway epithelial cells were seeded into decellularized rat tracheas. Tracheas were ligated to a sterile cassette and implanted subcutaneously in the flanks of nude mice. Grafts were harvested at 2, 4, or 6 weeks for tissue histology, fibrillar collagen, and transforming growth factor-ß activation analysis. We compared immunostaining in these xenografts to human lungs. Grafted epithelial cells generated a differentiated epithelium containing basal, ciliated, and mucus-expressing cells. By 4 weeks postengraftment, asthmatic epithelia showed decreased numbers of ciliated cells and decreased E-cadherin expression compared with nonasthmatic grafts, similar to human lungs. Grafts seeded with asthmatic epithelial cells had three times more fibrillar collagen and induction of transforming growth factor-ß isoforms at 6 weeks postengraftment compared with nonasthmatic grafts. Asthmatic epithelium alone is sufficient to drive aberrant mesenchymal remodeling with fibrillar collagen deposition in asthmatic xenografts. Moreover, this xenograft system represents an advance over current asthma models in that it permits direct assessment of the epithelial-mesenchymal trophic unit.


Assuntos
Asma/patologia , Xenoenxertos/patologia , Pulmão/patologia , Fibrose Pulmonar/patologia , Adulto , Remodelação das Vias Aéreas , Animais , Asma/fisiopatologia , Demografia , Modelos Animais de Doenças , Fator de Crescimento Epidérmico/metabolismo , Matriz Extracelular/metabolismo , Feminino , Xenoenxertos/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Ratos Endogâmicos F344 , Transdução de Sinais , Doadores de Tecidos , Fator de Crescimento Transformador beta1/metabolismo , Adulto Jovem
15.
Am J Respir Cell Mol Biol ; 57(4): 411-418, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28459279

RESUMO

Chronic obstructive pulmonary disease is the third leading cause of death worldwide. Gene expression profiling across multiple regions of the same lung identified genes significantly related to emphysema. We sought to determine whether the lung and epithelial expression of 127 emphysema-related genes was also related to lung function in independent cohorts, and whether any of these genes could be used as biomarkers in the peripheral blood of patients with chronic obstructive pulmonary disease. To that end, we examined whether the expression levels of these genes were under genetic control in lung tissue (n = 1,111). We then determined whether the mRNA levels of these genes in lung tissue (n = 727), small airway epithelial cells (n = 238), and peripheral blood (n = 620) were significantly related to lung function measurements. The expression of 63 of the 127 genes (50%) was under genetic control in lung tissue. The lung and epithelial mRNA expression of a subset of the emphysema-associated genes, including ASRGL1, LPHN2, and EDNRB, was strongly associated with lung function. In peripheral blood, the expression of 40 genes was significantly associated with lung function. Twenty-nine of these genes (73%) were also associated with lung function in lung tissue, but with the opposite direction of effect for 24 of the 29 genes, including those involved in hypoxia and B cell-related responses. The integrative genomics approach uncovered a significant overlap of emphysema genes associations with lung function between lung and blood with opposite directions between the two. These results support the use of peripheral blood to detect disease biomarkers.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Genômica , Pulmão/metabolismo , Enfisema Pulmonar/metabolismo , RNA Mensageiro/biossíntese , Linfócitos B/metabolismo , Linfócitos B/patologia , Biomarcadores/metabolismo , Hipóxia Celular , Feminino , Humanos , Pulmão/patologia , Masculino , Enfisema Pulmonar/genética , Enfisema Pulmonar/patologia , RNA Mensageiro/genética
17.
BMC Pulm Med ; 17(1): 24, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28137284

RESUMO

BACKGROUND: Recognition of the airway epithelium as a central mediator in the pathogenesis of asthma has necessitated greater understanding of the aberrant cellular mechanisms of the epithelium in asthma. The architecture of chromatin is integral to the regulation of gene expression and is determined by modifications to the surrounding histones and DNA. The acetylation, methylation, phosphorylation, and ubiquitination of histone tail residues has the potential to greatly alter the accessibility of DNA to the cells transcriptional machinery. DNA methylation can also interrupt binding of transcription factors and recruit chromatin remodelers resulting in general gene silencing. Although previous studies have found numerous irregularities in the expression of genes involved in asthma, the contribution of epigenetic regulation of these genes is less well known. We propose that the gene expression of epigenetic modifying enzymes is cell-specific and influenced by asthma status in tissues derived from the airways. METHODS: Airway epithelial cells (AECs) isolated by pronase digestion or endobronchial brushings and airway fibroblasts obtained by outgrowth technique from healthy and asthmatic donors were maintained in monolayer culture. RNA was analyzed for the expression of 82 epigenetic enzymes across 5 families of epigenetic modifying enzymes. Western blot and immunohistochemistry were also used to examine expression of 3 genes. RESULTS: Between AECs and airway fibroblasts, we identified cell-specific gene expression in each of the families of epigenetic modifying enzymes; specifically 24 of the 82 genes analyzed showed differential expression. We found that 6 histone modifiers in AECs and one in fibroblasts were differentially expressed in cells from asthmatic compared to healthy donors however, not all passed correction. In addition, we identified a corresponding increase in Aurora Kinase A (AURKA) protein expression in epithelial cells from asthmatics compared to those from non-asthmatics. CONCLUSIONS: In summary, we have identified cell-specific variation in gene expression in each of the families of epigenetic modifying enzymes in airway epithelial cells and airway fibroblasts. These data provide insight into the cell-specific variation in epigenetic regulation which may be relevant to cell fate and function, and disease susceptibility.


Assuntos
Asma/genética , Epigênese Genética , Células Epiteliais/enzimologia , Fibroblastos/enzimologia , Histonas/metabolismo , Asma/enzimologia , Diferenciação Celular , Células Cultivadas , Metilação de DNA , Expressão Gênica , Inativação Gênica , Humanos , Modelos Lineares , Processamento de Proteína Pós-Traducional , Sistema Respiratório/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Int J Mol Sci ; 18(8)2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28809791

RESUMO

The ability to respond to injury with tissue repair is a fundamental property of all multicellular organisms. The extracellular matrix (ECM), composed of fibrillar collagens as well as a number of other components is dis-regulated during repair in many organs. In many tissues, scaring results when the balance is lost between ECM synthesis and degradation. Investigating what disrupts this balance and what effect this can have on tissue function remains an active area of research. Recent advances in the imaging of fibrillar collagen using second harmonic generation (SHG) imaging have proven useful in enhancing our understanding of the supramolecular changes that occur during scar formation and disease progression. Here, we review the physical properties of SHG, and the current nonlinear optical microscopy imaging (NLOM) systems that are used for SHG imaging. We provide an extensive review of studies that have used SHG in skin, lung, cardiovascular, tendon and ligaments, and eye tissue to understand alterations in fibrillar collagens in scar tissue. Lastly, we review the current methods of image analysis that are used to extract important information about the role of fibrillar collagens in scar formation.


Assuntos
Cicatriz/metabolismo , Cicatriz/patologia , Colágeno/metabolismo , Microscopia Óptica não Linear/métodos , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA