Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.736
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 627(8003): 347-357, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38374256

RESUMO

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.


Assuntos
Diabetes Mellitus Tipo 2 , Progressão da Doença , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Adipócitos/metabolismo , Cromatina/genética , Cromatina/metabolismo , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/classificação , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/genética , Células Endoteliais/metabolismo , Células Enteroendócrinas , Epigenômica , Predisposição Genética para Doença/genética , Ilhotas Pancreáticas/metabolismo , Herança Multifatorial/genética , Doença Arterial Periférica/complicações , Doença Arterial Periférica/genética , Análise de Célula Única
2.
Nat Mater ; 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39080501

RESUMO

The question of whether all materials can solidify into the glassy form proposed by Turnbull half a century ago remains unsolved. Some of the simplest systems of monatomic metals have not been vitrified, especially the close-packed face-centred cubic metals. Here we report the vitrification of gold, which is notoriously difficult to be vitrified, and several similar close-packed face-centred cubic and hexagonal metals using a method of picosecond pulsed laser ablation in a liquid medium. The vitrification occurs through the rapid cooling during laser ablation and the inhibition of nucleation by the liquid medium. Using this method, a large number of atomic configurations, including glassy configurations, can be generated simultaneously, from which a stable glass state can be sampled. Simulations demonstrate that the favourable stability of monatomic metals stems from the strong topological frustration of icosahedra-like clusters. Our work breaks the limitation of the glass-forming ability of matter, indicating that vitrification is an intrinsic property of matter and providing a strategy for the preparation and design of metallic glasses from an atomic configuration perspective.

3.
FASEB J ; 38(1): e23354, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38085162

RESUMO

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common malignancy worldwide, and the development of novel therapeutic strategies for HNSCC requires a profound understanding of tumor cells and the tumor microenvironment (TME). Additionally, HNSCC has a poor prognosis, necessitating the use of genetic markers for predicting clinical outcomes in HNSCC. In this study, we performed single-cell sequencing analysis on tumor tissues from seven HNSCC patients, along with one adjacent normal tissue. Firstly, the analysis of epithelial cell clusters revealed two clusters of malignant epithelial cells, characterized by unique gene expression patterns and dysregulated signaling pathways compared to normal epithelial cells. Secondly, the examination of the TME unveiled extensive crosstalk between fibroblasts and malignant epithelial cells, potentially mediated through ligand-receptor interactions such as COL1A1-SDC1, COL1A1-CD44, and COL1A2-SDC1. Furthermore, transcriptional heterogeneity was observed in immune cells present in the TME, including macrophages and dendritic cells. Finally, leveraging the gene expression profiles of malignant epithelial cells, we developed a prognostic model comprising six genes, which we validated using two independent datasets. These findings shed light on the heterogeneity within HNSCC tumors and the intricate interplay between malignant cells and the TME. Importantly, the developed prognostic model demonstrates high efficacy in predicting the survival outcomes of HNSCC patients.


Assuntos
Carcinoma , Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço/genética , Prognóstico , Neoplasias de Cabeça e Pescoço/genética , Células Epiteliais , Microambiente Tumoral/genética
4.
Nature ; 569(7754): 99-103, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31043727

RESUMO

Since their discovery in 19601, metallic glasses based on a wide range of elements have been developed2. However, the theoretical prediction of glass-forming compositions is challenging and the discovery of alloys with specific properties has so far largely been the result of trial and error3-8. Bulk metallic glasses can exhibit strength and elasticity surpassing those of conventional structural alloys9-11, but the mechanical properties of these glasses are critically dependent on the glass transition temperature. At temperatures approaching the glass transition, bulk metallic glasses undergo plastic flow, resulting in a substantial decrease in quasi-static strength. Bulk metallic glasses with glass transition temperatures greater than 1,000 kelvin have been developed, but the supercooled liquid region (between the glass transition and the crystallization temperature) is narrow, resulting in very little thermoplastic formability, which limits their practical applicability. Here we report the design of iridium/nickel/tantalum metallic glasses (and others also containing boron) with a glass transition temperature of up to 1,162 kelvin and a supercooled liquid region of 136 kelvin that is wider than that of most existing metallic glasses12. Our Ir-Ni-Ta-(B) glasses exhibit high strength at high temperatures compared to existing alloys: 3.7 gigapascals at 1,000 kelvin9,13. Their glass-forming ability is characterized by a critical casting thickness of three millimetres, suggesting that small-scale components for applications at high temperatures or in harsh environments can readily be obtained by thermoplastic forming14. To identify alloys of interest, we used a simplified combinatorial approach6-8 harnessing a previously reported correlation between glass-forming ability and electrical resistivity15-17. This method is non-destructive, allowing subsequent testing of a range of physical properties on the same library of samples. The practicality of our design and discovery approach, exemplified by the identification of high-strength, high-temperature bulk metallic glasses, bodes well for enabling the discovery of other glassy alloys with exciting properties.

5.
Nano Lett ; 24(6): 2048-2056, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38166154

RESUMO

Chiroptical activities arising in nanoclusters (NCs) are emerging as one of the most dynamic areas of modern science. However, devising an overarching strategy that is capable of concurrently enhancing the photoluminescence (PL) and circularly polarized luminescence (CPL) of metal NCs remains a formidable challenge. Herein, gold and silver nanoclusters (AuNCs, AgNCs) are endowed with CPL, for the first time, through a universal host-guest approach─centered around perturbing a chiral microenvironment within chiral hosts, simultaneously enhancing emissions. Remarkably, the photoluminescence quantum yield (PLQY) of AuNCs has undergone an increase of over 200 times upon confinement, escalating from 0.05% to 12%, and demonstrates a CPL response. Moreover, a three-dimensional (3D) model termed "NCs@CMOF" featuring CPL activity is created using metal cluster-based assembly inks through the process of 3D printing. This work introduces a potentially straightforward and versatile approach for achieving both PL enhancement and CPL activities in metal clusters.

6.
J Am Chem Soc ; 146(29): 20263-20269, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39001849

RESUMO

α,ß-Diamino acids are important structural motifs and building blocks for numerous bioactive natural products, peptidomimetics, and pharmaceuticals, yet efficient asymmetric synthesis to access these stereoarrays remains a challenge. Herein, we report the development of a pyridoxal 5'-phosphate (PLP)-dependent enzyme that is engineered to catalyze stereoselective Mannich-type reactions between free α-amino acids and enolizable cyclic imines. This biocatalyst enabled one-step asymmetric enzymatic synthesis of the unusual pyrrolidine-containing amino acid L-tambroline at gram-scale with high enantio- and diastereocontrol. Furthermore, this enzymatic platform is capable of utilizing a diverse range of α-amino acids as the Mannich donor and various cyclic imines as the acceptor. By coupling with different imine-generating enzymes, we established versatile biocatalytic cascades and demonstrated a general, concise, versatile, and atom-economic approach to access unprotected α,ß-diamino acids, including structurally complex α,α-disubstituted α,ß-diamino acids with contiguous stereocenters.


Assuntos
Aminoácidos , Iminas , Iminas/química , Iminas/metabolismo , Estereoisomerismo , Aminoácidos/química , Aminoácidos/síntese química , Aminoácidos/metabolismo , Biocatálise , Fosfato de Piridoxal/química , Fosfato de Piridoxal/metabolismo , Estrutura Molecular
7.
J Am Chem Soc ; 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38847772

RESUMO

Despite the synthetic versatility of difluorocarbene, its high reactivity severely regulates widespread applications of difluorocarbene in organic synthesis. Here, we report a copper difluorocarbene-involved catalytic coupling, representing a new mode of the difluoromethylation reaction. This method allows difluoromethylation of a wide range of readily available allyl/propargyl electrophiles with NaBH3CN and low-cost difluorocarbene precursor BrCF2CO2K, featuring high cost-efficiency, high stereo- and regioselectivities, and high functional group tolerance, even with complex drug-like molecules. Applying the method led to the efficient synthesis of deuterated difluoromethylated compounds of medicinal interest. The resulting difluoromethylated allyl and allenyl products can serve as versatile synthons for diverse transformations, rendering the approach attractive for synthesizing complex fluorinated structures. Experimental mechanistic studies and computational calculations reveal that the formation of a difluoromethylcopper(I) intermediate through the nucleophilic attack of boron hydride on the copper(I) difluorocarbene is the key step in the reaction.

8.
J Am Chem Soc ; 146(5): 3545-3552, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38277257

RESUMO

Atom-precise metal nanoclusters (NCs) with large bulk (nuclearity >60) are important species for insight into the embryonic phase of metal nanoparticles and their top-down etching synthesis. Herein, we report a metastable rod-shaped 70-nuclei copper-hydride NC, [Cl@Cu70H22(PhC≡C)29(CF3COO)16]2+ (Cu70), with Cl- as the template, in which the Cl@Cu59 kernel adopts a distinctive metal packing mode along the bipolar direction, and the protective ligand shell exhibits corresponding site differentiation. In terms of metal nuclearity, Cu70 is the largest alkynyl-stabilized Cu-hydride cluster to date. As a typical highly active intermediate, Cu70 could undergo a transformation into a series of robust modularly assembled Cu clusters (B-type Cu8, A-A-type Cu22, A-B-type Cu23, and A-B-A-type Cu38) upon etching by p-tert-butylthiacalix[4]arene (H4TC4A), which could not be achieved by "one-pot" synthetic methods. Notably, the patterns of A and B blocks in the Cu NCs could be effectively modulated by employing appropriate counterions and blockers, and the modular assembly mechanism was illustrated through comprehensive solution chemistry analysis using HR-ESI-MS. Furthermore, catalytic investigations reveal that Cu38 could serve as a highly efficient catalyst for the cycloaddition of propargylic amines with CO2 under mild conditions. This work not only enriched the family of high-nuclear copper-hydride NCs but also provided new insights into the growth mechanism of metal NCs.

9.
J Gene Med ; 26(1): e3615, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123364

RESUMO

BACKGROUND: The aim of this study was to determine the effect of human urine-derived stem cells (HUSCs) for the treatment of spinal cord injury (SCI) and investigate associated the molecular network mechanism by using bioinformatics combined with experimental validation. METHODS: After the contusive SCI model was established, the HUSC-expressed specific antigen marker was implanted into the injury site immediately, and the Basso, Beattie and Bresnahan locomotor rating scale (BBB scale) was utilized to evaluate motor function so as to determine the effect of HUSCs for the neural repair after SCI. Then, the geneCards database was used to collect related gene targets for both HUSCs and SCI, and cross genes were merged with the findings of PubMed screen. Subsequently, protein-protein interaction (PPI) network, Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment, as well as core network construction, were performed using Cytoscape software. Lastly, real-time quantitative polymerase chain reaction (PCR) and immunofluorescence were employed to validate the mRNA expression and localization of 10 hub genes, and two of the most important, designated as cadherin 1 (CDH1) and integrin subunit beta 1 (ITGB1), were identified successfully. RESULTS: The immunophenotypes of HUSCs were marked by CD90+ and CD44+ but not CD45, and flow cytometry confirmed their character. The expression rates of CD90, CD73, CD44 and CD105 in HUSCs were 99.49, 99.77, 99.82 and 99.51%, respectively, while the expression rates of CD43, CD45, CD11b and HLA-DR were 0.08, 0.30, 1.34 and 0.02%, respectively. After SCI, all rats appeared to have severe motor dysfunction, but the BBB score was increased in HUSC-transplanted rats compared with control rats at 28 days. By using bioinformatics, we obtained 6668 targets for SCI and 1095 targets for HUSCs and identified a total of 645 cross targets between HUSCs and SCI. Based on the PPI and Cytoscape analysis, CD44, ACTB, FN1, ITGB1, HSPA8, CDH1, ALB, HSP90AA1 and GAPDH were identified as possible therapeutic targets. Enrichment analysis revealed that the involved signal pathways included complement and coagulation cascades, lysosome, systemic lupus erythematosus, etc. Lastly, quantificational real-time (qRT)-PCR confirmed the mRNA differential expression of CDH1/ITGB1 after HUSC therapy, and glial fibrillary acidic protein (GFAP) immunofluorescence staining showed that the astrocyte proliferation at the injured site could be reduced significantly after HUSC treatment. CONCLUSIONS: We validated that HUSC implantation is effective for the treatment of SCI, and the underlying mechanisms associated with the multiple molecular network. Of these, CDH1 and ITGB1 may be considered as important candidate targets. Those findings therefore provided the crucial evidence for the potential use of HUSCs in SCI treatment in future clinic trials.


Assuntos
Traumatismos da Medula Espinal , Ratos , Humanos , Animais , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/genética , Traumatismos da Medula Espinal/terapia , Traumatismos da Medula Espinal/metabolismo , Células-Tronco , RNA Mensageiro/metabolismo , Integrinas/uso terapêutico
10.
Small ; : e2402141, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953313

RESUMO

Abdominal aortic aneurysm (AAA) represents a critical cardiovascular condition characterized by localized dilation of the abdominal aorta, carrying a significant risk of rupture and mortality. Current treatment options are limited, necessitating novel therapeutic approaches. This study investigates the potential of a pioneering nanodrug delivery system, RAP@PFB, in mitigating AAA progression. RAP@PFB integrates pentagalloyl glucose (PGG) and rapamycin (RAP) within a metal-organic-framework (MOF) structure through a facile assembly process, ensuring remarkable drug loading capacity and colloidal stability. The synergistic effects of PGG, a polyphenolic antioxidant, and RAP, an mTOR inhibitor, collectively regulate key players in AAA pathogenesis, such as macrophages and smooth muscle cells (SMCs). In macrophages, RAP@PFB efficiently scavenges various free radicals, suppresses inflammation, and promotes M1-to-M2 phenotype repolarization. In SMCs, it inhibits apoptosis and calcification, thereby stabilizing the extracellular matrix and reducing the risk of AAA rupture. Administered intravenously, RAP@PFB exhibits effective accumulation at the AAA site, demonstrating robust efficacy in reducing AAA progression through multiple mechanisms. Moreover, RAP@PFB demonstrates favorable biosafety profiles, supporting its potential translation into clinical applications for AAA therapy.

11.
J Neurosci Res ; 102(1): e25255, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37814990

RESUMO

Spinal cord injury (SCI) is a highly disabling central nervous system injury with a complex pathological process, resulting in severe sensory and motor dysfunction. The current treatment modalities only alleviate its symptoms and cannot effectively intervene or treat its pathological process. Many studies have reported that the transforming growth factor (TGF)-ß signaling pathway plays an important role in neuronal differentiation, growth, survival, and axonal regeneration after central nervous system injury. Furthermore, the TGF-ß signaling pathway has a vital regulatory role in SCI pathophysiology and neural regeneration. Following SCI, regulation of the TGF-ß signaling pathway can suppress inflammation, reduce apoptosis, prevent glial scar formation, and promote neural regeneration. Due to its role in SCI, the TGF-ß signaling pathway could be a potential therapeutic target. This article reported the pathophysiology of SCI, the characteristics of the TGF-ß signaling pathway, the role of the TGF-ß signaling pathway in SCI, and the latest evidence for targeting the TGF-ß signaling pathway for treating SCI. In addition, the limitations and difficulties in TGF-ß signaling pathway research in SCI are discussed, and solutions are provided to address these potential challenges. We hope this will provide a reference for the TGF-ß signaling pathway and SCI research, offering a theoretical basis for targeted therapy of SCI.


Assuntos
Traumatismos da Medula Espinal , Humanos , Traumatismos da Medula Espinal/metabolismo , Apoptose , Gliose/metabolismo , Transdução de Sinais/fisiologia , Fator de Crescimento Transformador beta/metabolismo , Medula Espinal/metabolismo
12.
Bioinformatics ; 39(11)2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37882747

RESUMO

MOTIVATION: Accurate disease risk prediction is an essential step in the modern quest for precision medicine. While high-dimensional multi-omics data have provided unprecedented data resources for prediction studies, their high-dimensionality and complex inter/intra-relationships have posed significant analytical challenges. RESULTS: We proposed a two-step Bayesian linear mixed model framework (TBLMM) for risk prediction analysis on multi-omics data. TBLMM models the predictive effects from multi-omics data using a hybrid of the sparsity regression and linear mixed model with multiple random effects. It can resemble the shape of the true effect size distributions and accounts for non-linear, including interaction effects, among multi-omics data via kernel fusion. It infers its parameters via a computationally efficient variational Bayes algorithm. Through extensive simulation studies and the prediction analyses on the positron emission tomography imaging outcomes using data obtained from the Alzheimer's Disease Neuroimaging Initiative, we have demonstrated that TBLMM can consistently outperform the existing method in predicting the risk of complex traits. AVAILABILITY AND IMPLEMENTATION: The corresponding R package is available on GitHub (https://github.com/YaluWen/TBLMM).


Assuntos
Algoritmos , Multiômica , Teorema de Bayes , Modelos Lineares , Simulação por Computador
13.
Appl Environ Microbiol ; 90(1): e0130023, 2024 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-38112424

RESUMO

Streptomyces bingchenggensis is an industrial producer of milbemycins, which are important anthelmintic and insecticidal agents. Two-component systems (TCSs), which are typically situated in the same operon and are composed of a histidine kinase and a response regulator, are the predominant signal transduction pathways involved in the regulation of secondary metabolism in Streptomyces. Here, an atypical TCS, AtcR/AtcK, in which the encoding genes (sbi_06838/sbi_06839) are organized in a head-to-head pair, was demonstrated to be indispensable for the biosynthesis of multiple secondary metabolites in S. bingchenggensis. With the null TCS mutants, the production of milbemycin and yellow compound was abolished but nanchangmycin was overproduced. Transcriptional analysis and electrophoretic mobility shift assays showed that AtcR regulated the biosynthesis of these three secondary metabolites by a MilR3-mediated cascade. First, AtcR was activated by phosphorylation from signal-triggered AtcK. Second, the activated AtcR promoted the transcription of milR3. Third, MilR3 specifically activated the transcription of downstream genes from milbemycin and yellow compound biosynthetic gene clusters (BGCs) and nanR4 from the nanchangmycin BGC. Finally, because NanR4 is a specific repressor in the nanchangmycin BGC, activation of MilR3 downstream genes led to the production of yellow compound and milbemycin but inhibited nanchangmycin production. By rewiring the regulatory cascade, two strains were obtained, the yield of nanchangmycin was improved by 45-fold to 6.08 g/L and the production of milbemycin was increased twofold to 1.34 g/L. This work has broadened our knowledge on atypical TCSs and provided practical strategies to engineer strains for the production of secondary metabolites in Streptomyces.IMPORTANCEStreptomyces bingchenggensis is an important industrial strain that produces milbemycins. Two-component systems (TCSs), which consist of a histidine kinase and a response regulator, are the predominant signal transduction pathways involved in the regulation of secondary metabolism in Streptomyces. Coupled encoding genes of TCSs are typically situated in the same operon. Here, TCSs with encoding genes situated in separate head-to-head neighbor operons were labeled atypical TCSs. It was found that the atypical TCS AtcR/AtcK played an indispensable role in the biosynthesis of milbemycin, yellow compound, and nanchangmycin in S. bingchenggensis. This atypical TCS regulated the biosynthesis of specialized metabolites in a cascade mediated via a cluster-situated regulator, MilR3. Through rewiring the regulatory pathways, strains were successfully engineered to overproduce milbemycin and nanchangmycin. To the best of our knowledge, this is the first report on atypical TCS, in which the encoding genes of RR and HK were situated in separate head-to-head neighbor operons, involved in secondary metabolism. In addition, data mining showed that atypical TCSs were widely distributed in actinobacteria.


Assuntos
Éteres , Macrolídeos , Compostos de Espiro , Streptomyces , Histidina Quinase/metabolismo , Streptomyces/genética , Proteínas de Bactérias/genética
14.
Plant Physiol ; 191(2): 1272-1287, 2023 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-36437699

RESUMO

Increasing planting density is one of the most effective ways to improve crop yield. However, one major factor that limits crop planting density is the weakened immunity of plants to pathogens and insects caused by dim light (DL) under shade conditions. The molecular mechanism underlying how DL compromises plant immunity remains unclear. Here, we report that DL reduces rice (Oryza sativa) resistance against brown planthopper (BPH; Nilaparvata lugens) by elevating ethylene (ET) biosynthesis and signaling in a Phytochrome B (OsPHYB)-dependent manner. The DL-reduced BPH resistance is relieved in osphyB mutants, but aggravated in OsPHYB overexpressing plants. Further, we found that DL reduces the nuclear accumulation of OsphyB, thus alleviating Phytochrome Interacting Factor Like14 (OsPIL14) degradation, consequently leading to the up-regulation of 1-Aminocyclopropane-1-Carboxylate Oxidase1 (OsACO1) and an increase in ET levels. In addition, we found that nuclear OsphyB stabilizes Ethylene Insensitive Like2 (OsEIL2) by competitively interacting with EIN3 Binding F-Box Protein (OsEBF1) to enhance ET signaling in rice, which contrasts with previous findings that phyB blocks ET signaling by facilitating Ethylene Insensitive3 (EIN3) degradation in other plant species. Thus, enhanced ET biosynthesis and signaling reduces BPH resistance under DL conditions. Our findings provide insights into the molecular mechanism of the light-regulated ET pathway and host-insect interactions and potential strategies for sustainable insect management.


Assuntos
Etilenos , Hemípteros , Oryza , Fitocromo B , Animais , Etilenos/metabolismo , Hemípteros/metabolismo , Oryza/metabolismo , Fitocromo B/genética , Fitocromo B/metabolismo
15.
Liver Int ; 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963299

RESUMO

BACKGROUND AND AIMS: Lifestyle intervention is the mainstay of therapy for metabolic dysfunction-associated steatohepatitis (MASH), and liver fibrosis is a key consequence of MASH that predicts adverse clinical outcomes. The placebo response plays a pivotal role in the outcome of MASH clinical trials. Second harmonic generation/two-photon excitation fluorescence (SHG/TPEF) microscopy with artificial intelligence analyses can provide an automated quantitative assessment of fibrosis features on a continuous scale called qFibrosis. In this exploratory study, we used this approach to gain insight into the effect of lifestyle intervention-induced fibrosis changes in MASH. METHODS: We examined unstained sections from paired liver biopsies (baseline and end-of-intervention) from MASH individuals who had received either routine lifestyle intervention (RLI) (n = 35) or strengthened lifestyle intervention (SLI) (n = 17). We quantified liver fibrosis with qFibrosis in the portal tract, periportal, transitional, pericentral, and central vein regions. RESULTS: About 20% (7/35) and 65% (11/17) of patients had fibrosis regression in the RLI and SLI groups, respectively. Liver fibrosis tended towards no change or regression after each lifestyle intervention, and this phenomenon was more prominent in the SLI group. SLI-induced liver fibrosis regression was concentrated in the periportal region. CONCLUSION: Using digital pathology, we could detect a more pronounced fibrosis regression with SLI, mainly in the periportal region. With changes in fibrosis area in the periportal region, we could differentiate RLI and SLI patients in the placebo group in the MASH clinical trial. Digital pathology provides new insight into lifestyle-induced fibrosis regression and placebo responses, which is not captured by conventional histological staging.

16.
J Sleep Res ; 33(1): e13924, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37194421

RESUMO

This study aims to investigate the effects of obstructive sleep apnea on paediatric psychological and behavioural abnormalities. A total of 1086 paediatric patients with obstructive sleep apnea and 728 sample snoring controls were enrolled in the study. Patients with obstructive sleep apnea underwent bilateral tonsillectomy plus adenoidectomy or adenoidectomy alone. Repeated Autism Behaviour Checklist, Spence Children's Anxiety Scale, and Children's Depression Inventory were performed to assess the autism symptoms, anxiety level and depressive symptoms before and after surgery. The score of Autism Behaviour Checklist in preschool children with obstructive sleep apnea was higher than that in control. In school children with obstructive sleep apnea, the score of Spence Children's Anxiety Scale was also higher. School children with obstructive sleep apnea with depressive symptoms were significantly higher than that in control. The scores of Autism Behaviour Checklist, Spence Children's Anxiety Scale, and Children's Depression Inventory in the obstructive sleep apnea group after surgery were significantly lower than that before surgery. Our study showed that the score of Spence Children's Anxiety Scale and Children's Depression Inventory had a close correlation with the illness course and hypoxia duration. The Spence Children's Anxiety Scale and Children's Depression Inventory scores are also closely associated with the Autism Behaviour Checklist score. These results suggest that obstructive sleep apnea may have a significant impact on autism symptoms, anxiety levels and depressive symptoms in children. We found that the longer the duration of the obstructive sleep apnea course and hypoxia, the greater the impact on anxiety level and depressive symptoms. The suspected autism symptoms, anxiety level and depressive symptoms in children with obstructive sleep apnea were also significantly correlated. Thus, early detection and timely treatment may often reverse the psychological and behavioural abnormalities caused by obstructive sleep apnea.


Assuntos
Apneia Obstrutiva do Sono , Tonsilectomia , Pré-Escolar , Humanos , Criança , Estudos de Casos e Controles , Apneia Obstrutiva do Sono/complicações , Apneia Obstrutiva do Sono/epidemiologia , Apneia Obstrutiva do Sono/diagnóstico , Adenoidectomia , Hipóxia/cirurgia
17.
J Org Chem ; 89(13): 9543-9550, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38874168

RESUMO

A visible-light-initiated C-H trifluoromethylation of quinoxalin-2(1H)-ones was established using a Z-scheme V2O5/g-C3N4 heterojunction as a recyclable photocatalyst in an inert atmosphere at room temperature under additive-free and mild conditions. A variety of trifluoromethylated quinoxalin-2-(1H)-one derivatives were heterogeneously generated in moderate to high yields, exhibiting good functional group tolerance. Remarkably, the recyclable V2O5/g-C3N4 catalyst could be reused five times with a slight loss of catalytic activity.

18.
Analyst ; 149(12): 3309-3316, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38699925

RESUMO

An electrochemical microsensor for mesothelin (MSLN) based on an acupuncture needle (AN) was constructed in this work. To prepare the microsensor, MSLN was self-assembled on 4-mercaptophenylboronic acid (4-MPBA) by an interaction force between the external cis-diol and phenylboronic acid. This was followed by the gradual electropolymerization of thionine (TH) and eriochrome black T (EBT) around the anchored protein. The thickness of the surface imprinted layers influenced the sensing performance and needed to be smaller than the height of the anchored protein. The polymerized EBT was not electrically active, but the polymerized TH provided a significant electrochemical signal. Therefore, electron transfer smoothly proceeded through the eluted nanocavities. The imprinted nanocavities were highly selective toward MSLN, and the rebinding of insulating proteins reduced the electrochemical signal of the embedded pTH. The functionalized interface was characterized by SEM and electrochemical methods, and the preparation conditions were studied. After optimization, the sensor showed a linear response in the range of 0.1 to 1000 ng mL-1 with a detection limit of 10 pg mL-1, indicating good performance compared with other reported methods. This microsensor also showed high sensitivity and stability, which can be attributed to the fine complementation of the imprinted organic nanocavities. The sensitivity of this sensor was related to the nanocavities used for electron transport around the AuNPs. In the future, microsensors that can directly provide electrochemical signals are expected to play important roles especially on AN matrices.


Assuntos
Técnicas Biossensoriais , Técnicas Eletroquímicas , Eletrodos , Limite de Detecção , Mesotelina , Fenotiazinas , Fenotiazinas/química , Humanos , Técnicas Biossensoriais/métodos , Técnicas Biossensoriais/instrumentação , Técnicas Eletroquímicas/métodos , Técnicas Eletroquímicas/instrumentação , Polímeros Molecularmente Impressos/química , Agulhas , Ouro/química , Proteínas Ligadas por GPI/análise
19.
BMC Cardiovasc Disord ; 24(1): 120, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38383323

RESUMO

BACKGROUND: Acute aortic syndrome (AAS) is a life-threatening condition. Inflammation plays a key role in the pathogenesis, development and progression of AAS, and is associated with significant mortality and morbidity. Understanding the inflammatory responses and inflammation resolutions is essential for an appropriate management of AAS. METHOD: Thirty Chinese cardiovascular centers have collaborated to create a multicenter observational registry (named Chinese Additive Anti-inflammatory Action for Aortopathy & Arteriopathy [5A] registry), with consecutive enrollment of adult patients who underwent surgery for AAS that was started on Jan 1, 2016 and will be ended on December 31, 2040. Specially, the impact of inflammation and anti-inflammatory strategies on the early and late adverse events are investigated. Primary outcomes are severe systemic inflammatory response syndrome (SIRS), multiple organ dysfunction syndrome (MODS), Sequential Organ Failure Assessment (SOFA) scores at 7 days following this current surgery. Secondary outcomes are SISR, 30-day mortality, operative mortality, hospital mortality, new-onset stroke, acute kidney injury, surgical site infection, reoperation for bleeding, blood transfusion and length of stay in the intensive care unit. DISCUSSION: The analysis of this multicenter registry will allow our better knowledge of the prognostic importance of preoperative inflammation and different anti-inflammatory strategies in adverse events after surgery for AAS. This registry is expected to provide insights into novel different inflammatory resolutions in management of AAS beyond conventional surgical repair. TRIAL REGISTRATION: ClinicalTrials.gov Identifier: NCT04398992 (Initial Release: 05/19/2020).


Assuntos
Unidades de Terapia Intensiva , Doenças Vasculares , Adulto , Humanos , Anti-Inflamatórios , China , Inflamação , Estudos Multicêntricos como Assunto , Sistema de Registros , Estudos Observacionais como Assunto
20.
Acta Pharmacol Sin ; 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902502

RESUMO

The vasopressin V2 receptor (V2R) is a validated therapeutic target for autosomal dominant polycystic kidney disease (ADPKD), with tolvaptan being the first FDA-approved antagonist. Herein, we used Gaussian accelerated molecular dynamics simulations to investigate the spontaneous binding of tolvaptan to both active and inactive V2R conformations at the atomic-level. Overall, the binding process consists of two stages. Tolvaptan binds initially to extracellular loops 2 and 3 (ECL2/3) before overcoming an energy barrier to enter the pocket. Our simulations result highlighted key residues (e.g., R181, Y205, F287, F178) involved in this process, which were experimentally confirmed by site-directed mutagenesis. This work provides structural insights into tolvaptan-V2R interactions, potentially aiding the design of novel antagonists for V2R and other G protein-coupled receptors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA