RESUMO
Differentiated thyroid cancer (DTC) is the predominant type of thyroid cancer, with some patients experiencing relapse, distant metastases, or refractoriness, revealing limited treatment options. Chimeric antigen receptor (CAR)-modified Natural Killer (NK) cells are revolutionary therapeutic agents effective against various resistant cancers. Thyroid-stimulating hormone receptor (TSHR) expression in DTC provides a unique tumor-specific target for CAR therapy. Here, we developed an innovative strategy for treating DTC using modified NK-92 cells armed with a TSHR-targeted CAR. The modified cells showed enhanced cytotoxicity against TSHR-positive DTC cell lines and exhibited elevated degranulation and cytokine release. After undergoing irradiation, the cells effectively halted their proliferative capacity while maintaining potent targeted killing ability. Transfer of these irradiation-treated cells into NSG mice with DTC tumors resulted in profound tumor suppression. NK-92 cells modified with TSHR-CAR offer a promising, off-the-shelf option for advancing DTC immunotherapy.
Assuntos
Células Matadoras Naturais , Receptores de Antígenos Quiméricos , Receptores da Tireotropina , Neoplasias da Glândula Tireoide , Receptores da Tireotropina/imunologia , Receptores da Tireotropina/metabolismo , Neoplasias da Glândula Tireoide/patologia , Neoplasias da Glândula Tireoide/terapia , Neoplasias da Glândula Tireoide/imunologia , Humanos , Animais , Células Matadoras Naturais/imunologia , Linhagem Celular Tumoral , Receptores de Antígenos Quiméricos/imunologia , Receptores de Antígenos Quiméricos/metabolismo , Camundongos , Diferenciação Celular , Ensaios Antitumorais Modelo de Xenoenxerto , Camundongos Endogâmicos NOD , Proliferação de Células , Citotoxicidade Imunológica , Imunoterapia Adotiva/métodosRESUMO
OBJECTIVES: Over the past two decades, great progress has been made in advancing the early detection and multimodal treatment of non-small cell lung cancer (NSCLC). However, overall cure rates and survival rates of NSCLC are still not satisfactory, and research into new therapies is needed. This study attempted to construct human Fibroblast Activation Protein-Chimeric Antigen Receptor Natural killer (NK)-92 cells (hFAP-CAR-NK-92 cells) and explore their potential therapeutic effects in NSCLC. METHODS: Immunohistochemistry analysis was carried out to examine fibroblast activation protein (FAP) and Gasdermin E (GSDME) expression in clinical specimens of lung adenocarcinoma and squamous cell carcinoma tissue. Then the engineered hFAP-CAR-NK-92 cells efficiency was determined in vitro with lactate dehydrogenase (LDH) cytotoxicity assay and the cell morphology of A549, H226, and cancer-related fibroblast (CAF) was observed by electron microscopy. After the co-culture of target cells and effect cells, flow cytometry was employed for examining the CD107a expression in the effect cells, and western blotting was conducted for the cleavage levels of Caspase 3 and GSDME proteins in the target cells. The safety and efficacy of hFAP-CAR-NK-92 cells adoptive transfer immunotherapy in a tumor-bearing mouse were evaluated. RESULTS: Clinical studies have shown FAP positivity in patients with NSCLC. Compared with A549 or H226 cells alone, FAP expression was notably raised in A549+CAF cells or H226+CAF cells in nude mice, respectively (p < 0.05). The killing efficiency of K562 cells was not significantly different between hFAP-CAR-NK-92 and NK-92 cells (p > 0.05). The hFAP-CAR-NK-92 cells presented a higher killing efficiency against the hFAP-target (A549-hFAP, H226-hFAP and CAF-hFAP) cells than the NK-92 cells (p < 0.05). The degranulation of CD107a and cleavage levels of GSDME and Caspase 3 protein in the hFAP-CAR-NK-92 group were higher than those in the NK-92 group (p < 0.05). The 300 nM Granzyme B also induced pyroptosis in hFAP- or GSDME-positive cells (p < 0.05). In vivo experiments revealed that hFAP-CAR-NK-92 cells inhibited tumor progression of hFAP-positive NSCLC (p < 0.05). CONCLUSIONS: In this study, we successfully constructed hFAP-CAR-NK-92 cells and confirmed that hFAP-CAR-NK-92 cells could target hFAP-positive NSCLC to inhibit the progression of NSCLC by activating the Caspase-3/GSDME pyroptosis pathway.
Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Receptores de Antígenos Quiméricos , Humanos , Animais , Camundongos , Receptores de Antígenos Quiméricos/metabolismo , Carcinoma Pulmonar de Células não Pequenas/terapia , Caspase 3/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Neoplasias Pulmonares/terapia , Células Matadoras Naturais/metabolismo , Imunoterapia AdotivaRESUMO
PURPOSE/OBJECTIVE(S): The precise radiomics analysis on thoracic 4DCT data is easily compromised by the respiratory motion and CT scan parameter setting, thus leading to the risk of overfitting and/or misinterpretation of data in AI-enabled therapeutic model building. In this study, we investigated the impact of respiratory amplitudes, frequencies and CT scan pitch settings within the thoracic 4DCT scan on robust radiomics feature selection. MATERIALS/METHODS: A Three-dimensional QUSARTM lung tumor phantom was used to simulate different respiratory amplitudes and frequencies along with different CT scan pitch settings. A total of 43 tumor respiratory patterns extracted from 43 patients with non-small cell lung cancer were used to drive the QUSARTM lung tumor phantom to mimic the human tumor motion. The 4DCT images of the QUSARTM lung tumor phantom with different respiratory patterns and different CT scan pitch setups were acquired for radiomics feature extraction. A static high-quality CT images of the phantom acquired were also used as a reference for radiomics feature extraction. The range of respiratory amplitudes was mimicked at 3mm at left and right (LR) and anterior and posterior (AP) directions and 3mm - 15 mm at the superior and inferior (SI) direction with an interval of 2 mm. The respiratory frequencies were set at 10, 11, 12, 13, 14, 15 and 20 beats per minute (BPMs), respectively. The CT scan pitches were set at 0.025, 0.048, 0.071, 0.93, 0.108, 0.14, 0.16, 0.18, 0.21, 0.23, and 0.25, respectively, which was based on a procedure described in Med. Phys. 30(1):88-97. The pairwise Concordance Correlation Coefficient (CCC) was used to determine the robustness of radiomics feature extraction via comparing the agreement in feature values between 1766 radiomics features extracted from each image acquired under different combinations of respiratory amplitudes and frequencies and CT scan pitches of 4DCT and those extracted from the static CT images. RESULTS: (1) When the respiratory amplitudes were at 3, 5, 7, 9, 12 and 15mm in the SI direction, the maximum CCC index could be achieved at the reconstructed 4DCT phase images of 60%, 70%, 30%, 20%, 60%~70% and 10%, respectively. Under these six amplitudes, the maximum intensity projection (MIP) and average intensity projection (AIP) images reconstructed show mean CCC values of 0.778 and 0.609, respectively, in pairwise radiomics feature extraction comparison between 4DCT and static CT. (2) When the respiratory amplitude was set at 12 mm in the SI direction, the maximum CCC index could be consistently achieved at the reconstructed 4DCT phase of 90% for the seven respiratory frequencies of 10, 11, 12, 13, 14, 15 and 20 BPMs, respectively. Under these respiratory states, the MIP and AIP images reconstructed show mean CCC values of 0.702 and 0.562, respectively. (3) When the respiratory amplitude was set at 12 mm and the respiratory frequency was set at 13 BPM, the maximum CCC index could be obtained at the reconstructed 4DCT phase of 90% for all scan pitches used except the 0% phase which was obtained at the pitch setting of 0.048. Under these CT scan pitch settings, the MIP and AIP images reconstructed show mean CCC values of 0.558 and 0.782, respectively. (4) The total number of robust features were 50, 34 and 35 with different respiratory amplitudes and phases and CT scanning pitch used (CCC values ≥ 0.99). CONCLUSION: In 4DCT, the respiratory amplitude, frequency and CT scan pitch are three limiting factors that greatly affect the robustness of radiomics feature extraction. The reconstructed 4DCT phases with better robustness along with suitable respiratory amplitude, frequency and CT scan pitch determined could be used to guide the breathing training for patients with lung cancer for radiation therapy to improve the robust radiomics feature extraction process.