Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.970
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 186(5): 1066-1085.e36, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36868209

RESUMO

A generalizable strategy with programmable site specificity for in situ profiling of histone modifications on unperturbed chromatin remains highly desirable but challenging. We herein developed a single-site-resolved multi-omics (SiTomics) strategy for systematic mapping of dynamic modifications and subsequent profiling of chromatinized proteome and genome defined by specific chromatin acylations in living cells. By leveraging the genetic code expansion strategy, our SiTomics toolkit revealed distinct crotonylation (e.g., H3K56cr) and ß-hydroxybutyrylation (e.g., H3K56bhb) upon short chain fatty acids stimulation and established linkages for chromatin acylation mark-defined proteome, genome, and functions. This led to the identification of GLYR1 as a distinct interacting protein in modulating H3K56cr's gene body localization as well as the discovery of an elevated super-enhancer repertoire underlying bhb-mediated chromatin modulations. SiTomics offers a platform technology for elucidating the "metabolites-modification-regulation" axis, which is widely applicable for multi-omics profiling and functional dissection of modifications beyond acylations and proteins beyond histones.


Assuntos
Cromatina , Proteoma , Acilação , Mapeamento Cromossômico , Histonas , Sobrevivência Celular
2.
Cell ; 185(7): 1172-1188.e28, 2022 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-35303419

RESUMO

Intestinal mucus forms the first line of defense against bacterial invasion while providing nutrition to support microbial symbiosis. How the host controls mucus barrier integrity and commensalism is unclear. We show that terminal sialylation of glycans on intestinal mucus by ST6GALNAC1 (ST6), the dominant sialyltransferase specifically expressed in goblet cells and induced by microbial pathogen-associated molecular patterns, is essential for mucus integrity and protecting against excessive bacterial proteolytic degradation. Glycoproteomic profiling and biochemical analysis of ST6 mutations identified in patients show that decreased sialylation causes defective mucus proteins and congenital inflammatory bowel disease (IBD). Mice harboring a patient ST6 mutation have compromised mucus barriers, dysbiosis, and susceptibility to intestinal inflammation. Based on our understanding of the ST6 regulatory network, we show that treatment with sialylated mucin or a Foxo3 inhibitor can ameliorate IBD.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Sialiltransferases/genética , Animais , Homeostase , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Camundongos , Muco/metabolismo , Sialiltransferases/metabolismo , Simbiose
3.
Cell ; 176(5): 982-997.e16, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30712873

RESUMO

Immune cells and epithelium form sophisticated barrier systems in symbiotic relationships with microbiota. Evidence suggests that immune cells can sense microbes through intact barriers, but regulation of microbial commensalism remain largely unexplored. Here, we uncovered spatial compartmentalization of skin-resident innate lymphoid cells (ILCs) and modulation of sebaceous glands by a subset of RORγt+ ILCs residing within hair follicles in close proximity to sebaceous glands. Their persistence in skin required IL-7 and thymic stromal lymphopoietin, and localization was dependent on the chemokine receptor CCR6. ILC subsets expressed TNF receptor ligands, which limited sebocyte growth by repressing Notch signaling pathway. Consequently, loss of ILCs resulted in sebaceous hyperplasia with increased production of antimicrobial lipids and restricted commensalism of Gram-positive bacterial communities. Thus, epithelia-derived signals maintain skin-resident ILCs that regulate microbial commensalism through sebaceous gland-mediated tuning of the barrier surface, highlighting an immune-epithelia circuitry that facilitates host-microbe symbiosis.


Assuntos
Linfócitos/imunologia , Glândulas Sebáceas/metabolismo , Glândulas Sebáceas/microbiologia , Animais , Bactérias/metabolismo , Citocinas/metabolismo , Epitélio/imunologia , Folículo Piloso/metabolismo , Folículo Piloso/microbiologia , Imunidade Inata , Interleucina-7/metabolismo , Linfócitos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microbiota/imunologia , Receptores CCR6/metabolismo , Receptores Notch/metabolismo , Receptores do Fator de Necrose Tumoral/metabolismo , Glândulas Sebáceas/imunologia , Pele/metabolismo , Fenômenos Fisiológicos da Pele , Simbiose , Linfopoietina do Estroma do Timo
4.
Immunity ; 57(5): 1005-1018.e7, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38697116

RESUMO

Cytokine expression during T cell differentiation is a highly regulated process that involves long-range promoter-enhancer and CTCF-CTCF contacts at cytokine loci. Here, we investigated the impact of dynamic chromatin loop formation within the topologically associating domain (TAD) in regulating the expression of interferon gamma (IFN-γ) and interleukin-22 (IL-22); these cytokine loci are closely located in the genome and are associated with complex enhancer landscapes, which are selectively active in type 1 and type 3 lymphocytes. In situ Hi-C analyses revealed inducible TADs that insulated Ifng and Il22 enhancers during Th1 cell differentiation. Targeted deletion of a 17 bp boundary motif of these TADs imbalanced Th1- and Th17-associated immunity, both in vitro and in vivo, upon Toxoplasma gondii infection. In contrast, this boundary element was dispensable for cytokine regulation in natural killer cells. Our findings suggest that precise cytokine regulation relies on lineage- and developmental stage-specific interactions of 3D chromatin architectures and enhancer landscapes.


Assuntos
Fator de Ligação a CCCTC , Diferenciação Celular , Interferon gama , Interleucina 22 , Interleucinas , Células Th1 , Animais , Fator de Ligação a CCCTC/metabolismo , Fator de Ligação a CCCTC/genética , Células Th1/imunologia , Camundongos , Diferenciação Celular/imunologia , Interferon gama/metabolismo , Sítios de Ligação , Interleucinas/metabolismo , Interleucinas/genética , Elementos Facilitadores Genéticos/genética , Camundongos Endogâmicos C57BL , Cromatina/metabolismo , Toxoplasmose/imunologia , Toxoplasmose/parasitologia , Toxoplasmose/genética , Regulação da Expressão Gênica , Toxoplasma/imunologia , Citocinas/metabolismo , Linhagem da Célula , Células Th17/imunologia
5.
Nat Immunol ; 20(7): 890-901, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31209400

RESUMO

Progenitor-like CD8+ T cells mediate long-term immunity to chronic infection and cancer and respond potently to immune checkpoint blockade. These cells share transcriptional regulators with memory precursor cells, including T cell-specific transcription factor 1 (TCF1), but it is unclear whether they adopt distinct programs to adapt to the immunosuppressive environment. By comparing the single-cell transcriptomes and epigenetic profiles of CD8+ T cells responding to acute and chronic viral infections, we found that progenitor-like CD8+ T cells became distinct from memory precursor cells before the peak of the T cell response. We discovered a coexpression gene module containing Tox that exhibited higher transcriptional activity associated with more abundant active histone marks in progenitor-like cells than memory precursor cells. Moreover, thymocyte selection-associated high mobility group box protein TOX (TOX) promoted the persistence of antiviral CD8+ T cells and was required for the programming of progenitor-like CD8+ T cells. Thus, long-term CD8+ T cell immunity to chronic viral infection requires unique transcriptional and epigenetic programs associated with the transcription factor TOX.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Infecções/etiologia , Análise de Célula Única , Animais , Biomarcadores , Imunoprecipitação da Cromatina , Epigênese Genética , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Proteínas de Homeodomínio/metabolismo , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Memória Imunológica , Infecções/metabolismo , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Camundongos , Fatores de Tempo , Transcriptoma
6.
Cell ; 165(5): 1120-1133, 2016 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-27156451

RESUMO

Innate lymphoid cells (ILCs) play key roles in host defense, barrier integrity, and homeostasis and mirror adaptive CD4(+) T helper (Th) cell subtypes in both usage of effector molecules and transcription factors. To better understand the relationship between ILC subsets and their Th cell counterparts, we measured genome-wide chromatin accessibility. We find that chromatin in proximity to effector genes is selectively accessible in ILCs prior to high-level transcription upon activation. Accessibility of these regions is acquired in a stepwise manner during development and changes little after in vitro or in vivo activation. Conversely, dramatic chromatin remodeling occurs in naive CD4(+) T cells during Th cell differentiation using a type-2-infection model. This alteration results in a substantial convergence of Th2 cells toward ILC2 regulomes. Our data indicate extensive sharing of regulatory circuitry across the innate and adaptive compartments of the immune system, in spite of their divergent developing pathways.


Assuntos
Redes Reguladoras de Genes , Linfócitos/citologia , Linfócitos/imunologia , Animais , Linhagem da Célula , Feminino , Regulação da Expressão Gênica , Linfócitos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Transcriptoma
7.
Nat Immunol ; 19(12): 1403-1414, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30397350

RESUMO

Repair of tissue damaged during inflammatory processes is key to the return of local homeostasis and restoration of epithelial integrity. Here we describe CD161+ regulatory T (Treg) cells as a distinct, highly suppressive population of Treg cells that mediate wound healing. These Treg cells were enriched in intestinal lamina propria, particularly in Crohn's disease. CD161+ Treg cells had an all-trans retinoic acid (ATRA)-regulated gene signature, and CD161 expression on Treg cells was induced by ATRA, which directly regulated the CD161 gene. CD161 was co-stimulatory, and ligation with the T cell antigen receptor induced cytokines that accelerated the wound healing of intestinal epithelial cells. We identified a transcription-factor network, including BACH2, RORγt, FOSL2, AP-1 and RUNX1, that controlled expression of the wound-healing program, and found a CD161+ Treg cell signature in Crohn's disease mucosa associated with reduced inflammation. These findings identify CD161+ Treg cells as a population involved in controlling the balance between inflammation and epithelial barrier healing in the gut.


Assuntos
Mucosa Intestinal/imunologia , Subfamília B de Receptores Semelhantes a Lectina de Células NK/imunologia , Subpopulações de Linfócitos T/imunologia , Linfócitos T Reguladores/imunologia , Tretinoína/imunologia , Cicatrização/imunologia , Doença de Crohn/imunologia , Humanos
8.
Immunity ; 54(3): 514-525.e6, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33657395

RESUMO

MicroRNAs are important regulators of immune responses. Here, we show miR-221 and miR-222 modulate the intestinal Th17 cell response. Expression of miR-221 and miR-222 was induced by proinflammatory cytokines and repressed by the cytokine TGF-ß. Molecular targets of miR-221 and miR-222 included Maf and Il23r, and loss of miR-221 and miR-222 expression shifted the transcriptomic spectrum of intestinal Th17 cells to a proinflammatory signature. Although the loss of miR-221 and miR-222 was tolerated for maintaining intestinal Th17 cell homeostasis in healthy mice, Th17 cells lacking miR-221 and miR-222 expanded more efficiently in response to IL-23. Both global and T cell-specific deletion of miR-221 and miR-222 rendered mice prone to mucosal barrier damage. Collectively, these findings demonstrate that miR-221 and miR-222 are an integral part of intestinal Th17 cell response that are induced after IL-23 stimulation to constrain the magnitude of proinflammatory response.


Assuntos
Inflamação/imunologia , Interleucina-23/metabolismo , Mucosa Intestinal/imunologia , MicroRNAs/genética , Células Th17/imunologia , Animais , Retroalimentação Fisiológica , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-maf/metabolismo , Receptores de Interleucina/metabolismo , Transdução de Sinais , Fator de Crescimento Transformador beta/metabolismo
9.
Immunity ; 53(4): 745-758.e4, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33010223

RESUMO

Innate immune responses rely on rapid and precise gene regulation mediated by accessibility of regulatory regions to transcription factors (TFs). In natural killer (NK) cells and other innate lymphoid cells, competent enhancers are primed during lineage acquisition, and formation of de novo enhancers characterizes the acquisition of innate memory in activated NK cells and macrophages. Here, we investigated how primed and de novo enhancers coordinate to facilitate high-magnitude gene induction during acute activation. Epigenomic and transcriptomic analyses of regions near highly induced genes (HIGs) in NK cells both in vitro and in a model of Toxoplasma gondii infection revealed de novo chromatin accessibility and enhancer remodeling controlled by signal-regulated TFs STATs. Acute NK cell activation redeployed the lineage-determining TF T-bet to de novo enhancers, independent of DNA-sequence-specific motif recognition. Thus, acute stimulation reshapes enhancer function through the combinatorial usage and repurposing of both lineage-determining and signal-regulated TFs to ensure an effective response.


Assuntos
Elementos Facilitadores Genéticos/genética , Elementos Facilitadores Genéticos/imunologia , Células Matadoras Naturais/imunologia , Fatores de Transcrição/genética , Fatores de Transcrição/imunologia , Animais , Cromatina/genética , Cromatina/imunologia , Feminino , Expressão Gênica/genética , Expressão Gênica/imunologia , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Imunidade Inata/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Toxoplasma/imunologia , Toxoplasmose/genética , Toxoplasmose/imunologia
10.
Nat Immunol ; 17(7): 851-860, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27158840

RESUMO

T cell antigen receptor (TCR) signaling drives distinct responses depending on the differentiation state and context of CD8(+) T cells. We hypothesized that access of signal-dependent transcription factors (TFs) to enhancers is dynamically regulated to shape transcriptional responses to TCR signaling. We found that the TF BACH2 restrains terminal differentiation to enable generation of long-lived memory cells and protective immunity after viral infection. BACH2 was recruited to enhancers, where it limited expression of TCR-driven genes by attenuating the availability of activator protein-1 (AP-1) sites to Jun family signal-dependent TFs. In naive cells, this prevented TCR-driven induction of genes associated with terminal differentiation. Upon effector differentiation, reduced expression of BACH2 and its phosphorylation enabled unrestrained induction of TCR-driven effector programs.


Assuntos
Fatores de Transcrição de Zíper de Leucina Básica/metabolismo , Linfócitos T CD8-Positivos/fisiologia , Fator de Transcrição AP-1/metabolismo , Vaccinia virus/imunologia , Vacínia/imunologia , Imunidade Adaptativa , Animais , Fatores de Transcrição de Zíper de Leucina Básica/genética , Linfócitos T CD8-Positivos/virologia , Diferenciação Celular/genética , Células Cultivadas , Elementos Facilitadores Genéticos/genética , Regulação da Expressão Gênica , Memória Imunológica/genética , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Oncogênica p65(gag-jun) , Transdução de Sinais/genética , Fator de Transcrição AP-1/genética
11.
Immunity ; 51(4): 682-695.e6, 2019 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-31353223

RESUMO

Innate lymphocytes maintain tissue homeostasis at mucosal barriers, with group 2 innate lymphoid cells (ILC2s) producing type 2 cytokines and controlling helminth infection. While the molecular understanding of ILC2 responses has advanced, the complexity of microenvironmental factors impacting ILC2s is becoming increasingly apparent. Herein, we used single-cell analysis to explore the diversity of gene expression among lung lymphocytes during helminth infection. Following infection, we identified a subset of ILC2s that preferentially expressed Il5-encoding interleukin (IL)-5, together with Calca-encoding calcitonin gene-related peptide (CGRP) and its cognate receptor components. CGRP in concert with IL-33 and neuromedin U (NMU) supported IL-5 but constrained IL-13 expression and ILC2 proliferation. Without CGRP signaling, ILC2 responses and worm expulsion were enhanced. Collectively, these data point to CGRP as a context-dependent negative regulatory factor that shapes innate lymphocyte responses to alarmins and neuropeptides during type 2 innate immune responses.


Assuntos
Inflamação/imunologia , Linfócitos/imunologia , Nippostrongylus/fisiologia , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/metabolismo , Infecções por Strongylida/imunologia , Animais , Células Cultivadas , Citocinas/metabolismo , Imunidade Inata , Interleucina-33/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neuropeptídeos/metabolismo , Receptores de Peptídeo Relacionado com o Gene de Calcitonina/genética , Análise de Célula Única , Células Th2/imunologia , Quimeras de Transplante
12.
Immunity ; 50(1): 106-120.e10, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30650370

RESUMO

CD4+ T helper (Th) differentiation is regulated by diverse inputs, including the vitamin A metabolite retinoic acid (RA). RA acts through its receptor RARα to repress transcription of inflammatory cytokines, but is also essential for Th-mediated immunity, indicating complex effects of RA on Th specification and the outcome of the immune response. We examined the impact of RA on the genome-wide transcriptional response during Th differentiation to multiple subsets. RA effects were subset-selective and were most significant in Th9 cells. RA globally antagonized Th9-promoting transcription factors and inhibited Th9 differentiation. RA directly targeted the extended Il9 locus and broadly modified the Th9 epigenome through RARα. RA-RARα activity limited murine Th9-associated pulmonary inflammation, and human allergic inflammation was associated with reduced expression of RA target genes. Thus, repression of the Th9 program is a major function of RA-RARα signaling in Th differentiation, arguing for a role for RA in interleukin 9 (IL-9) related diseases.


Assuntos
Hipersensibilidade/imunologia , Pulmão/fisiologia , Pneumonia/imunologia , Receptor alfa de Ácido Retinoico/metabolismo , Linfócitos T Auxiliares-Indutores/fisiologia , Animais , Repressão Epigenética , Células HEK293 , Humanos , Hipersensibilidade/genética , Interleucina-9/metabolismo , Pulmão/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pneumonia/genética , Receptor alfa de Ácido Retinoico/genética , Transdução de Sinais , Transcrição Gênica , Tretinoína/metabolismo
13.
Nature ; 602(7898): 606-611, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35197620

RESUMO

Two-dimensional materials with monolayer thickness and extreme aspect ratios are sought for their high surface areas and unusual physicochemical properties1. Liquid exfoliation is a straightforward and scalable means of accessing such materials2, but has been restricted to sheets maintained by strong covalent, coordination or ionic interactions3-10. The exfoliation of molecular crystals, in which repeat units are held together by weak non-covalent bonding, could generate a greatly expanded range of two-dimensional crystalline materials with diverse surfaces and structural features. However, at first sight, these weak forces would seem incapable of supporting such intrinsically fragile morphologies. Against this expectation, we show here that crystals composed of discrete supramolecular coordination complexes can be exfoliated by sonication to give free-standing monolayers approximately 2.3 nanometres thick with aspect ratios up to approximately 2,500:1, sustained purely by apolar intermolecular interactions. These nanosheets are characterized by atomic force microscopy and high-resolution transmission electron microscopy, confirming their crystallinity. The monolayers possess complex chiral surfaces derived partly from individual supramolecular coordination complex components but also from interactions with neighbours. In this respect, they represent a distinct type of material in which molecular components are all equally exposed to their environment, as if in solution, yet with properties arising from cooperation between molecules, because of crystallinity. This unusual nature is reflected in the molecular recognition properties of the materials, which bind carbohydrates with strongly enhanced enantiodiscrimination relative to individual molecules or bulk three-dimensional crystals.


Assuntos
Microscopia de Força Atômica , Microscopia Eletrônica de Transmissão
14.
Nat Immunol ; 16(10): 1085-93, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26258942

RESUMO

The locus encoding the T cell antigen receptor (TCR) α-chain and δ-chain (Tcra-Tcrd) undergoes recombination of its variable-diversity-joining (V(D)J) segments in CD4(-)CD8(-) double-negative thymocytes and CD4(+)CD8(+) double-positive thymocytes to generate diverse TCRδ repertoires and TCRα repertoires, respectively. Here we identified a chromatin-interaction network in the Tcra-Tcrd locus in double-negative thymocytes that was formed by interactions between binding elements for the transcription factor CTCF. Disruption of a discrete chromatin loop encompassing the D, J and constant (C) segments of Tcrd allowed a single V segment to frequently contact and rearrange to D and J segments and dominate the adult TCRδ repertoire. Disruption of this loop also narrowed the TCRα repertoire, which, we believe, followed as a consequence of the restricted TCRδ repertoire. Hence, a single CTCF-mediated chromatin loop directly regulated TCRδ diversity and indirectly regulated TCRα diversity.


Assuntos
Cromatina/química , Receptores de Antígenos de Linfócitos T alfa-beta/química , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/química , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Animais , Cromatina/genética , Citometria de Fluxo , Camundongos , Conformação de Ácido Nucleico , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T gama-delta/genética
15.
Nat Immunol ; 16(4): 397-405, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25729925

RESUMO

Signaling via the pre-T cell antigen receptor (pre-TCR) and the receptor Notch1 induces transient self-renewal (ß-selection) of TCRß(+) CD4(-)CD8(-) double-negative stage 3 (DN3) and DN4 progenitor cells that differentiate into CD4(+)CD8(+) double-positive (DP) thymocytes, which then rearrange the locus encoding the TCR α-chain (Tcra). Interleukin 7 (IL-7) promotes the survival of TCRß(-) DN thymocytes by inducing expression of the pro-survival molecule Bcl-2, but the functions of IL-7 during ß-selection have remained unclear. Here we found that IL-7 signaled TCRß(+) DN3 and DN4 thymocytes to upregulate genes encoding molecules involved in cell growth and repressed the gene encoding the transcriptional repressor Bcl-6. Accordingly, IL-7-deficient DN4 cells lacked trophic receptors and did not proliferate but rearranged Tcra prematurely and differentiated rapidly. Deletion of Bcl6 partially restored the self-renewal of DN4 cells in the absence of IL-7, but overexpression of BCL2 did not. Thus, IL-7 critically acts cooperatively with signaling via the pre-TCR and Notch1 to coordinate proliferation, differentiation and Tcra recombination during ß-selection.


Assuntos
Interleucina-7/genética , Receptor Notch1/genética , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Timócitos/metabolismo , Animais , Antígenos CD4/genética , Antígenos CD4/imunologia , Antígenos CD8/genética , Antígenos CD8/imunologia , Diferenciação Celular , Proliferação de Células , Sobrevivência Celular , Regulação da Expressão Gênica , Interleucina-7/deficiência , Interleucina-7/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/imunologia , Proteínas Proto-Oncogênicas c-bcl-6/deficiência , Proteínas Proto-Oncogênicas c-bcl-6/genética , Proteínas Proto-Oncogênicas c-bcl-6/imunologia , Receptor Notch1/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Recombinação Genética , Transdução de Sinais , Timócitos/citologia , Timócitos/imunologia , Timo/citologia , Timo/imunologia , Timo/metabolismo
16.
Nature ; 592(7855): 541-544, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33883731

RESUMO

Single-molecule imaging is challenging but highly beneficial for investigating intermolecular interactions at the molecular level1-6. Van der Waals interactions at the sub-nanometre scale strongly influence various molecular behaviours under confinement conditions7-11. Inspired by the traditional compass12, here we use a para-xylene molecule as a rotating pointer to detect the host-guest van der Waals interactions in the straight channel of the MFI-type zeolite framework. We use integrated differential phase contrast scanning transmission electron microscopy13-15 to achieve real-space imaging of a single para-xylene molecule in each channel. A good correlation between the orientation of the single-molecule pointer and the atomic structure of the channel is established by combining the results of calculations and imaging studies. The orientations of para-xylene help us to identify changes in the van der Waals interactions, which are related to the channel geometry in both spatial and temporal dimensions. This work not only provides a visible and sensitive means to investigate host-guest van der Waals interactions in porous materials at the molecular level, but also encourages the further study of other single-molecule behaviours using electron microscopy techniques.

17.
Nature ; 593(7859): 440-444, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33767446

RESUMO

Defects in DNA repair frequently lead to neurodevelopmental and neurodegenerative diseases, underscoring the particular importance of DNA repair in long-lived post-mitotic neurons1,2. The cellular genome is subjected to a constant barrage of endogenous DNA damage, but surprisingly little is known about the identity of the lesion(s) that accumulate in neurons and whether they accrue throughout the genome or at specific loci. Here we show that post-mitotic neurons accumulate unexpectedly high levels of DNA single-strand breaks (SSBs) at specific sites within the genome. Genome-wide mapping reveals that SSBs are located within enhancers at or near CpG dinucleotides and sites of DNA demethylation. These SSBs are repaired by PARP1 and XRCC1-dependent mechanisms. Notably, deficiencies in XRCC1-dependent short-patch repair increase DNA repair synthesis at neuronal enhancers, whereas defects in long-patch repair reduce synthesis. The high levels of SSB repair in neuronal enhancers are therefore likely to be sustained by both short-patch and long-patch processes. These data provide the first evidence of site- and cell-type-specific SSB repair, revealing unexpected levels of localized and continuous DNA breakage in neurons. In addition, they suggest an explanation for the neurodegenerative phenotypes that occur in patients with defective SSB repair.


Assuntos
Quebras de DNA de Cadeia Simples , Reparo do DNA , Elementos Facilitadores Genéticos/genética , Neurônios/metabolismo , 5-Metilcitosina/metabolismo , Linhagem Celular , DNA/biossíntese , Replicação do DNA , Humanos , Masculino , Metilação , Poli(ADP-Ribose) Polimerases/metabolismo , Análise de Sequência de DNA
18.
Mol Cell ; 75(6): 1229-1242.e5, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31377117

RESUMO

Interferon gamma (IFN-γ), critical for host defense and tumor surveillance, requires tight control of its expression. Multiple cis-regulatory elements exist around Ifng along with a non-coding transcript, Ifng-as1 (also termed NeST). Here, we describe two genetic models generated to dissect the molecular functions of this locus and its RNA product. DNA deletion within the Ifng-as1 locus disrupted chromatin organization of the extended Ifng locus, impaired Ifng response, and compromised host defense. Insertion of a polyA signal ablated the Ifng-as1 full-length transcript and impaired host defense, while allowing proper chromatin structure. Transient knockdown of Ifng-as1 also reduced IFN-γ production. In humans, discordant expression of IFNG and IFNG-AS1 was evident in memory T cells, with high expression of this long non-coding RNA (lncRNA) and low expression of the cytokine. These results establish Ifng-as1 as an important regulator of Ifng expression, as a DNA element and transcribed RNA, involved in dynamic and cell state-specific responses to infection.


Assuntos
Regulação da Expressão Gênica/imunologia , Memória Imunológica , Infecções/imunologia , Interferon gama/imunologia , RNA não Traduzido/imunologia , Linfócitos T/imunologia , Animais , Cromatina/genética , Cromatina/imunologia , Feminino , Técnicas de Silenciamento de Genes , Infecções/genética , Infecções/patologia , Interferon gama/genética , Camundongos , RNA não Traduzido/genética , Linfócitos T/patologia
19.
Proc Natl Acad Sci U S A ; 121(5): e2315362121, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38261614

RESUMO

Carbon-based single-atom catalysts, a promising candidate in electrocatalysis, offer insights into electron-donating effects of metal center on adjacent atoms. Herein, we present a practical strategy to rationally design a model catalyst with a single zinc (Zn) atom coordinated with nitrogen and sulfur atoms in a multilevel carbon matrix. The Zn site exhibits an atomic interface configuration of ZnN4S1, where Zn's electron injection effect enables thermal-neutral hydrogen adsorption on neighboring atoms, pushing the activity boundaries of carbon electrocatalysts toward electrochemical hydrogen evolution to an unprecedented level. Experimental and theoretical analyses confirm the low-barrier Volmer-Tafel mechanism of proton reduction, while the multishell hollow structures facilitate the hydrogen evolution even at high current intensities. This work provides insights for understanding the actual active species during hydrogen evolution reaction and paves the way for designing high-performance electrocatalysts.

20.
Proc Natl Acad Sci U S A ; 121(2): e2313616121, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38165939

RESUMO

Emulating angstrom-scale dynamics of the highly selective biological ion channels is a challenging task. Recent work on angstrom-scale artificial channels has expanded our understanding of ion transport and uptake mechanisms under confinement. However, the role of chemical environment in such channels is still not well understood. Here, we report the anomalously enhanced transport and uptake of ions under confined MoS2-based channels that are ~five angstroms in size. The ion uptake preference in the MoS2-based channels can be changed by the selection of surface functional groups and ion uptake sequence due to the interplay between kinetic and thermodynamic factors that depend on whether the ions are mixed or not prior to uptake. Our work offers a holistic picture of ion transport in 2D confinement and highlights ion interplay in this regime.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA