Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Mol Cell Biol ; 22(20): 7015-23, 2002 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12242282

RESUMO

v-Crk, an oncogene product of avian sarcoma virus CT10, efficiently transforms chicken embryo fibroblasts (CEF). We have recently reported that constitutive activation of the phosphoinositide 3-kinase (PI3K)/AKT pathway plays a critical role in the v-Crk-induced transformation of CEF. In the present study we investigated the molecular mechanism by which v-Crk activates the PI3K/AKT pathway. First, we found that v-Crk promotes the association of the p85 regulatory subunit of PI3K with focal adhesion kinase (FAK) by inducing the phosphorylation of the Y397 residue in FAK. This FAK phosphorylation needs activation of the Src family tyrosine kinase(s) for which the v-Crk SH2 domain is responsible. v-Crk was unable to activate the PI3K/AKT pathway in FAK-null cells, indicating the functional importance of FAK. In addition, we found that H-Ras is also required for the activation of the PI3K/AKT pathway. The v-Crk-induced activation of AKT was greatly enhanced by the overexpression of H-Ras or its guanine nucleotide exchange factor mSOS, which binds to the v-Crk SH3 domain, whereas a dominant-negative mutant of H-Ras almost completely suppressed this activation. Furthermore, we showed that v-Crk stimulates the interaction of H-Ras with the Ras binding domain in the PI3K p110 catalytic subunit. Our data indicated that the v-Crk-induced activation of PI3K/AKT pathway was cooperatively achieved by two distinct interactions. One is the interaction of p85 with tyrosine-phosphorylated FAK promoted by the v-Crk SH2 domain, and another is the interaction of p110 with H-Ras dictated by the v-Crk SH3 domain.


Assuntos
Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas , Proteínas Oncogênicas de Retroviridae/metabolismo , Transdução de Sinais , Animais , Vírus do Sarcoma Aviário/metabolismo , Embrião de Galinha , Ativação Enzimática , Quinase 1 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Humanos , Proteína Oncogênica v-crk , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas c-akt , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Oncogênicas de Retroviridae/genética , Transformação Genética , Tirosina/metabolismo , Quinases da Família src/genética , Quinases da Família src/metabolismo
2.
Mol Cell Biol ; 23(17): 6139-49, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-12917336

RESUMO

PTEN is a tumor suppressor frequently inactivated in brain, prostate, and uterine cancers that acts as a phosphatase on phosphatidylinositol-3,4,5-trisphosphate, antagonizing the activity of the phosphatidylinositol 3'-OH kinase. PTEN manifests its tumor suppressor function in most tumor cells by inducing G(1)-phase cell cycle arrest. To study the mechanism of cell cycle arrest, we established a tetracycline-inducible expression system for PTEN in cell lines lacking this gene. Expression of wild-type PTEN but not of mutant forms unable to dephosphorylate phosphoinositides reduced the expression of cyclin D1. Cyclin D1 reduction was accompanied by a marked decrease in endogenous retinoblastoma (Rb) protein phosphorylation on cyclin D/CDK4-specific sites, showing an early negative effect of PTEN on Rb inactivation. PTEN expression also prevented cyclin D1 from localizing to the nucleus during the G(1)- to S-phase cell cycle transition. The PTEN-induced localization defect and the cell growth arrest could be rescued by the expression of a nucleus-persistent mutant form of cyclin D1, indicating that an important effect of PTEN is at the level of nuclear availability of cyclin D1. Constitutively active Akt/PKB kinase counteracted the effect of PTEN on cyclin D1 translocation. The data are consistent with an oncogenesis model in which a lack of PTEN fuels the cell cycle by increasing the nuclear availability of cyclin D1 through the Akt/PKB pathway.


Assuntos
Ciclo Celular/fisiologia , Núcleo Celular/metabolismo , Ciclina D1/metabolismo , Monoéster Fosfórico Hidrolases/metabolismo , Proteínas Serina-Treonina Quinases , Proteínas Supressoras de Tumor/metabolismo , Transporte Ativo do Núcleo Celular/fisiologia , Ciclo Celular/efeitos dos fármacos , Divisão Celular/genética , Células Cultivadas , Cromonas/farmacologia , Ciclina D1/efeitos dos fármacos , Quinase 4 Dependente de Ciclina , Quinases Ciclina-Dependentes/metabolismo , Inibidores Enzimáticos/farmacologia , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Humanos , Cloreto de Lítio/farmacologia , Morfolinas/farmacologia , Mutação , PTEN Fosfo-Hidrolase , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Fosfoproteínas Fosfatases/metabolismo , Monoéster Fosfórico Hidrolases/genética , Fosforilação , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-akt , Proteína do Retinoblastoma/metabolismo , Proteínas Supressoras de Tumor/genética
3.
Oncogene ; 24(36): 5648-55, 2005 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-16007212

RESUMO

Ras-induced transformation is characterized not only by uncontrolled proliferation but also by drastic morphological changes accompanied by the disruption of the actin cytoskeleton. Previously, we reported that human fibroblasts are more resistant than rodent fibroblasts to Ras-induced transformation. To explore the molecular basis for the difference in susceptibility to Ras-induced transformation, we investigated the effect of activated H-Ras on the actin cytoskeleton in human diploid fibroblasts and in rat embryo fibroblasts, both of which are immortalized by SV40 early region. We demonstrate here that Ras-induced morphological changes, decreased expression of tropomyosin isoforms, and suppression of the ROCK/LIMK/Cofilin pathway observed in the rat fibroblasts were not detected in the human fibroblasts even with high expression levels of Ras. We also show that activation of the MEK/ERK pathway sufficed to induce all of these alterations in the rat fibroblasts, whereas the human fibroblasts were refractory to these MEK/ERK-mediated changes. In addition to morphological changes, we demonstrated that the expression of activated Ras induced an invasive phenotype in the rat, but not in the human fibroblasts. These studies provide evidence for the existence of human-specific mechanisms that resist Ras/MEK/ERK-mediated transformation.


Assuntos
Actinas/metabolismo , Citoesqueleto/metabolismo , Diploide , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Invasividade Neoplásica/patologia , Proteínas ras/metabolismo , Fatores de Despolimerização de Actina , Animais , Células Cultivadas , Regulação para Baixo , Matriz Extracelular/metabolismo , Fibroblastos , Humanos , Sistema de Sinalização das MAP Quinases , Proteínas dos Microfilamentos/metabolismo , Peso Molecular , Fosforilação , Isoformas de Proteínas/metabolismo , Ratos , Tropomiosina/metabolismo , Proteínas ras/genética
4.
Oncogene ; 22(38): 5946-57, 2003 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-12955073

RESUMO

CrkII belongs to the adaptor protein family that plays a crucial role in signal transduction. In order to better understand the biological functions of CrkII, we focused on the regulation of gene expression by CrkII. Various transcriptional control elements were examined for their activation by CrkII-expression, and we found that CrkII selectively activates the serum response element (SRE), a transcriptional control element of immediate-early genes. This SRE activation induced by CrkII-overexpression was mediated by the serum response factor (SRF) via Rho. Indeed, we confirmed that the amount of activated Rho was increased in the CrkII-expressing cells. Moreover, we showed that when overexpressed, CrkII induces the cellular transformation of NIH 3T3 cells and that a dominant negative mutant of Rho suppresses this transformation, strongly suggesting that activation of Rho is essential for the transforming activity by CrkII. Furthermore, we also found that CrkII and Galpha12, a member of the heterotrimeric G proteins, synergistically activates Rho as well as the SRF, and that an SH3 mutant of CrkII can inhibit the Galpha12-induced activation of SRF. These results strongly suggest that CrkII is involved in the activation of Rho and SRF by Galpha12. Our study provides strong evidence that Rho activation plays a crucial role in CrkII-mediated signals to induce gene expression and cellular transformation.


Assuntos
Transformação Celular Neoplásica , Proteínas Proto-Oncogênicas/metabolismo , Elemento de Resposta Sérica/fisiologia , Fator de Resposta Sérica/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Células 3T3/metabolismo , Células 3T3/patologia , Animais , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP , Regulação da Expressão Gênica , Genes Reporter , Proteínas Heterotriméricas de Ligação ao GTP/genética , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Camundongos , Mutação , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-crk , Fator de Resposta Sérica/genética , Transdução de Sinais , Ativação Transcricional , Proteínas rho de Ligação ao GTP/genética
5.
Oncogene ; 23(52): 8527-34, 2004 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-15378021

RESUMO

The c-abl tyrosine kinase is the proto-oncogene of the v-abl oncogene of the Abelson murine leukemia virus. Although mutational variants of c-Abl can exhibit gain of function and can produce a transformed phenotype, the function of c-Abl in transformation remained unclear. Here, we report that the loss of c-abl facilitates transformation. c-abl-knockout mouse embryonic fibroblasts (MEFs) immortalized by SV40 T antigen acquired anchorage-independent growth, and by constructing mutational variants of T antigen we showed that binding of large T antigen to p53 and RB was necessary to induce anchorage-independent growth. Although c-abl/p53 double-knockout MEFs did not undergo anchorage-independent growth, those expressing human papilloma virus 16 E7, which mainly inactivates RB, did. Our results show that the loss of c-abl facilitates anchorage-independent growth in the context of p53 and RB deficiency, and suggest that loss of function of c-abl facilitates some types of transformation.


Assuntos
Fibroblastos/metabolismo , Proteínas Proto-Oncogênicas c-abl/deficiência , Proteína do Retinoblastoma/deficiência , Proteína Supressora de Tumor p53/deficiência , Animais , Antígenos Transformantes de Poliomavirus/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Camundongos , Proteínas Oncogênicas Virais/metabolismo , Proteínas E7 de Papillomavirus , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-abl/genética , Proteínas Proto-Oncogênicas c-abl/metabolismo
6.
Cell Cycle ; 3(3): 257-8, 2004 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-14726647

RESUMO

It has long been known that human cells are more refractory than rodent cells against oncogenic transformation in vitro. Recent success to make normal human cells susceptible to oncogene-mediated transformation by the ectopic expression of the telomerase catalytic subunit (hTERT) introduces the possibility that the difference in the regulation of telomerase expression can explain the different susceptibility to transformation between human and rodent cells. In a recent study, however, we demonstrated that normal human fibroblasts are still more resistant than normal rodent fibroblasts to oncogenic transformation even with the ectopic expression of hTERT. Our results clearly indicate that a difference in telomere biology can not fully account for the species difference in transformability, and that normal human cells have still undefined intrinsic mechanisms rendering them resistant to oncogenic transformation.


Assuntos
Transformação Celular Neoplásica , Diploide , Fibroblastos/citologia , Fibroblastos/metabolismo , Oncogenes/fisiologia , Animais , Proteínas de Ligação a DNA , Humanos , Transdução de Sinais , Telomerase/genética , Telomerase/metabolismo
7.
BMC Cell Biol ; 3: 18, 2002 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-12119061

RESUMO

BACKGROUND: The adaptor protein p130Cas (Cas) has been shown to be involved in different cellular processes including cell adhesion, migration and transformation. This protein has a substrate domain with up to 15 tyrosines that are potential kinase substrates, able to serve as docking sites for proteins with SH2 or PTB domains. Cas interacts with focal adhesion plaques and is phosphorylated by the tyrosine kinases FAK and Src. A number of effector molecules have been shown to interact with Cas and play a role in its function, including c-crk and v-crk, two adaptor proteins involved in intracellular signaling. Cas function is dependent on tyrosine phosphorylation of its substrate domain, suggesting that tyrosine phosphorylation of Cas in part regulates its control of adhesion and migration. To determine whether the substrate domain alone when tyrosine phosphorylated could signal, we have constructed a chimeric Cas molecule that is phosphorylated independently of upstream signals. RESULTS: We found that a tyrosine phosphorylated Cas substrate domain acts as a dominant negative mutant by blocking Cas-mediated signaling events, including JNK activation by the oncogene v-crk in transient and stable lines and v-crk transformation. This block was the result of competition for binding partners as the chimera competed for binding to endogenous c-crk and exogenously expressed v-crk. CONCLUSION: Our approach suggests a novel method to study adaptor proteins that require phosphorylation, and indicates that mere tyrosine phosphorylation of the substrate domain of Cas is not sufficient for its function.


Assuntos
Fosfoproteínas/metabolismo , Proteínas , Proteínas Oncogênicas de Retroviridae/antagonistas & inibidores , Proteínas Oncogênicas de Retroviridae/fisiologia , Transdução de Sinais/fisiologia , Tirosina/metabolismo , Ligação Competitiva/fisiologia , Proteína Oncogênica v-crk , Fosfoproteínas/fisiologia , Fosforilação , Fosfotransferases/metabolismo , Estrutura Secundária de Proteína/fisiologia , Proteínas Recombinantes/metabolismo , Proteína do Retinoblastoma/metabolismo , Proteína do Retinoblastoma/fisiologia , Proteína p130 Retinoblastoma-Like , Proteínas Oncogênicas de Retroviridae/metabolismo , Tirosina/fisiologia
8.
Proc Natl Acad Sci U S A ; 103(14): 5490-5, 2006 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-16569692

RESUMO

Human diploid fibroblasts (HDF) immortalized by hTERT and simian virus 40 (SV40) early region (ER) exhibit a limited degree of transformation upon the expression of activated H-RAS (H-RAS V12) compared with rat embryonic fibroblasts (REF) immortalized by SV40 ER. Here, we identified FRA1 as a determinant for this difference in RAS-induced transformation. FRA1 was not induced by H-RAS V12 in the immortalized HDF, in contrast to its marked accumulation in the immortalized REF. Ectopic expression of FRA1 significantly enhanced anchorage-independent growth of various HDF expressing hTERT, SV40 ER, and H-RAS V12. More importantly, FRA1 could induce anchorage-independent growth as well as nude mice tumor formation of the immortalized HDF in the absence of H-RAS V12. The results of an in vitro kinase assay clearly showed that the RAS-induced extracellular signal-regulated kinase (ERK) activation, which is responsible for FRA1 induction, was markedly attenuated in the HDF compared with that in the REF, despite no obvious differences in the phosphorylation status of ERK between the species. Our results strongly suggest that HDF negatively regulate the mitogen-activated protein kinase kinase (MEK)/ERK pathway more efficiently than REF, and consequently express less malignant phenotypes in response to H-RAS V12.


Assuntos
Genes ras , Proteínas Proto-Oncogênicas c-fos/fisiologia , Animais , Western Blotting , Transformação Celular Neoplásica , Humanos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Análise de Sequência com Séries de Oligonucleotídeos , Ratos
9.
Proc Natl Acad Sci U S A ; 100(23): 13567-72, 2003 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-14597713

RESUMO

Human cells are known to be more refractory than rodent cells against oncogenic transformation in vitro. To date, the molecular mechanisms underlying such resistance remain largely unknown. The combination of simian virus 40 early region and H-Ras V12 has been effective for transformation of rat embryo fibroblasts, but not for human cells. However, the additional ectopic expression of the telomerase catalytic subunit (hTERT) was reported to be capable of causing transformation of normal human cells. In this study, however, we demonstrate that the combined expression of the above-mentioned three genetic elements is not always sufficient to transform normal human diploid fibroblasts (HDF). Although the expression and function of these introduced genetic elements were essentially the same, among four HDF, TIG-1 and TIG-3 were resistant to transformation. The other two (BJ and IMR-90) showed transformed phenotypes, but they were much restricted compared with rat embryo fibroblasts in expressing simian virus 40 early region and H-Ras V12. In correlation with these phenotypes, TIG-1 and TIG-3 remained diploid after the introduction of these genetic elements, whereas BJ and IMR-90 became highly aneuploid. These results strongly suggest that the lack of telomerase is not the sole reason for the refractory nature of HDF against transformation and that normal human cells have still undefined intrinsic mechanisms rendering them resistant to oncogenic transformation.


Assuntos
Transformação Celular Neoplásica , Fibroblastos/metabolismo , Animais , Antígenos Transformantes de Poliomavirus/metabolismo , Linhagem Celular Transformada , Proteínas de Ligação a DNA , Diploide , Embrião de Mamíferos/citologia , Fibroblastos/citologia , Citometria de Fluxo , Técnicas de Transferência de Genes , Humanos , Immunoblotting , Dados de Sequência Molecular , Fenótipo , Ratos , Retroviridae/genética , Especificidade da Espécie , Telomerase/metabolismo , Telômero/metabolismo , Telômero/ultraestrutura , Fatores de Tempo
10.
Proc Natl Acad Sci U S A ; 101(51): 17693-8, 2004 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-15598735

RESUMO

CrkII is an adaptor protein possessing oncogenic potential despite the lack of an enzymatic domain. We investigated here the physiological functions of CrkII by studying its ability to induce anchorage-independent cell growth. We found that inhibition or null mutation of focal adhesion kinase (FAK) blocked the anchorage-independent growth induced by CrkII overexpression, indicating that FAK is a critical determinant of the transforming activity of CrkII. CrkII overexpression enhanced the autophosphorylation of FAK at Tyr-397 and tyrosine phosphorylation of p130(Cas) (Crk-associated substrate, Cas) upon stimulation of integrin by fibronectin. Moreover, the constitutive phosphorylation of FAK and Cas was observed in CrkII-overexpressing cells, even when they were in the suspended condition, consistent with the ability of CrkII to induce anchorage-independent growth. Using Cas-deficient cells, we showed Cas function to be essential for both the CrkII-induced phosphorylation of FAK (Tyr-397) and anchorage-independent cell growth. The CrkII-induced FAK autophosphorylation depended upon CrkII-Cas complex formation. Furthermore, we showed that CrkII knockdown resulted in defects in integrin-mediated events, such as cell spreading, haptotactic migration, and FAK autophosphorylation. The integrin-mediated FAK autophosphorylation was also reduced in Cas-deficient cells. These results suggest that the CrkII-Cas complex functions in integrin-mediated FAK activation signaling. Our findings show the importance of CrkII in integrin-mediated events, acting upstream of FAK to affect the activation of this kinase, which appears to have a central role in this pathway.


Assuntos
Proteínas Tirosina Quinases/metabolismo , Proteínas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Linhagem Celular , Proliferação de Células , Proteína Substrato Associada a Crk , Ativação Enzimática , Quinase 1 de Adesão Focal , Proteína-Tirosina Quinases de Adesão Focal , Expressão Gênica , Humanos , Integrinas/metabolismo , Camundongos , Fosforilação , Fosfotirosina/metabolismo , Ligação Proteica , Proteínas Tirosina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-crk , Proteína p130 Retinoblastoma-Like
11.
Cell Growth Differ ; 13(3): 131-9, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-11959814

RESUMO

The adaptor protein Crk has been reported to associate with focal adhesions and is thought to be involved in integrin-mediated signaling pathway. However, the precise mechanism of Crk-dependent regulation of cytoskeleton still remains under investigation. In this study, we have established a v-Crk-inducible cell line in rat fibroblasts 3Y1 cells and found that v-Crk activated Rho and induced actin stress fiber formation. In addition to the induction of tyrosine-phosphorylation of p130(Cas) and paxillin, we demonstrated that v-Crk induced threonine-phosphorylated bands sized at 72/78 kDa found specifically in 3Y1 cells. Both of the inhibitors of Rho and Rho-associated kinase, C3 and Y27632, respectively, inhibited these v-Crk-induced biochemical effects. Although v-Crk-induced cells exhibited a decrease of cell motility, integrin stimulation recovered the suppression of motility. Furthermore, v-Crk enhanced motility in chemotactic assay toward fibronectin with additional activation of Rho and the increase of levels of CD44 cleavage. These results suggest that v-Crk activated Rho and induced actin stress fiber formation and CD44 cleavage leading to the regulation of cell motility.


Assuntos
Proteínas de Fase Aguda/metabolismo , Movimento Celular , Fibroblastos/metabolismo , Proteínas Oncogênicas de Retroviridae/farmacologia , Transdução de Sinais , Animais , Linhagem Celular , Células Cultivadas , Proteína Oncogênica v-crk , Fosforilação , Fosfotreonina/metabolismo , Ratos , Ratos Endogâmicos , Proteínas Oncogênicas de Retroviridae/genética , Treonina/metabolismo
12.
J Biol Chem ; 278(24): 21685-92, 2003 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-12672821

RESUMO

Mammalian Enabled (Mena) is a mammalian homologue of Drosophila Enabled (Ena), which genetically interacts with Drosophila Abl tyrosine kinase. The signaling pathway involving c-Abl and Mena (Ena) is not fully understood. To find molecules that participate in the c-Abl/Mena pathway, we searched for Mena-binding proteins using a yeast two-hybrid system. We identified Abl interactor 1 (Abi-1), which is known to interact with c-Abl, as a binding protein for Mena. Binding analysis revealed that the Ena/Vasp homology 1 domain of Mena and the polyproline structure of Abi-1 are necessary for the interaction. The interaction between Mena and Abi-1 was also observed in a mammalian expression system. Importantly, Abi-1 dramatically promoted c-Abl-mediated tyrosine phosphorylation of Mena but not other substrates such as c-Cbl. Mutational analysis demonstrated that the phosphorylation site of Mena is Tyr-296. Our results suggest that Abi-1 regulates c-Abl-mediated phosphorylation of Mena by interacting with both proteins.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto , Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/fisiologia , Proteínas Proto-Oncogênicas c-abl/metabolismo , Tirosina/química , Processamento Alternativo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas de Transporte/fisiologia , Linhagem Celular , Análise Mutacional de DNA , DNA Complementar/metabolismo , Biblioteca Gênica , Glutationa Transferase/metabolismo , Proteínas de Homeodomínio/metabolismo , Humanos , Camundongos , Proteínas dos Microfilamentos , Microscopia de Fluorescência , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido
13.
EMBO J ; 23(20): 3984-94, 2004 Oct 13.
Artigo em Inglês | MEDLINE | ID: mdl-15457211

RESUMO

PVR, the Drosophila homolog of the PDGF/VEGF receptor, has been implicated in border cell migration during oogenesis and hemocyte migration during embryogenesis. It was earlier shown that Mbc, a CDM family protein, and its effector, Rac, transduced the guidance signal from PVR during border cell migration. Here we demonstrate that PVR is also required for the morphogenetic process, thorax closure, during metamorphosis. The results of genetic and biochemical experiments indicate that PVR activates the JNK pathway. We present evidence showing Crk (an adaptor molecule), Mbc, ELMO (a homolog of Caenorhabditis elegans CED-12 and mammalian ELMO), and Rac to be mediators of JNK activation by PVR. In addition, we suppose that not only Rac but also Cdc42 is activated and involved in JNK activation downstream of PVR.


Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/crescimento & desenvolvimento , Proteínas de Insetos/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Metamorfose Biológica , Morfogênese , Receptores Proteína Tirosina Quinases/metabolismo , Animais , Células Cultivadas , Proteínas do Citoesqueleto/metabolismo , Drosophila/citologia , Drosophila/fisiologia , Proteínas de Drosophila/química , Proteínas de Drosophila/genética , Embrião não Mamífero , Proteínas de Insetos/química , Proteínas de Insetos/genética , Interferência de RNA , Receptores Proteína Tirosina Quinases/química , Receptores Proteína Tirosina Quinases/genética , Transdução de Sinais , Transgenes , Proteína cdc42 de Ligação ao GTP/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo
14.
J Biol Chem ; 279(45): 46843-50, 2004 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-15326184

RESUMO

Cell migration is a well organized process regulated by the extracellular matrix-mediated cytoskeletal reorganization. The signaling adaptor protein Crk has been shown to regulate cell motility, but its precise role is still under investigation. Herein, we report that Crk associates with ERM family proteins (including ezrin, radixin, and moesin), activates RhoA, and promotes cell motility toward hyaluronic acid. The binding of Crk with ERMs was demonstrated both by transient and stable protein expression systems in 293T cells and 3Y1 cells, and it was shown that v-Crk translocated the phosphorylated form of ERMs to microvilli in 3Y1 cells by immunofluorescence and immunoelectron microscopy. This v-Crk-dependent formation of microvilli was suppressed by inhibitors of Rho-associated kinase, and the activity of RhoA was elevated by coexpression of c-Crk-II and ERMs in 3Y1 cells. In concert with the activation of RhoA by Crk, Crk was found to associate with Rho-GDI, which has been shown to bind to ERMs. Furthermore, upon hyaluronic acid treatment, coexpression of c-Crk-II and ERMs enhanced cell motility, whereas the sole expression of c-Crk-II or either of the ERMs decreased the motility of 3Y1 cells. These results suggest that Crk may be involved in regulation of cell motility by a hyaluronic acid-dependent mechanism through an association with ERMs.


Assuntos
Proteínas Sanguíneas/metabolismo , Proteínas do Citoesqueleto/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Ácido Hialurônico/química , Proteínas de Membrana/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fosfoproteínas/metabolismo , Fatores de Transcrição/metabolismo , Animais , Linhagem Celular , Movimento Celular , Ativação Enzimática , Humanos , Receptores de Hialuronatos/biossíntese , Immunoblotting , Imunoprecipitação , Peptídeos e Proteínas de Sinalização Intracelular , Microscopia Confocal , Microscopia de Fluorescência , Microscopia Imunoeletrônica , Modelos Biológicos , Fosforilação , Plasmídeos/metabolismo , Ligação Proteica , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-crk , Ratos , Transfecção , Proteínas rac de Ligação ao GTP/metabolismo , Quinases Associadas a rho , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA