Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Med Phys ; 46(11): 4816-4825, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31448421

RESUMO

PURPOSE: Xtrim-PET is a newly designed Silicon Photomultipliers (SiPMs)-based prototype PET scanner dedicated for small laboratory animal imaging. We present the performance evaluation of the Xtrim-PET scanner following NEMA NU-4 2008 standards to help optimizing scanning protocols which can be achieved through standard and reliable system performance characterization. METHODS: The performance assessment was conducted according to the National Electrical Manufacturers Association (NEMA) NU-4 2008 standards in terms of spatial resolution, sensitivity, counting rate performance, scatter fraction and image quality. The in vivo imaging capability of the scanner is also showcased through scanning a normal mouse injected with 18 F-FDG. Furthermore, the performance characteristics of the developed scanner are compared with commercially available systems and current prototypes. RESULTS: The volumetric spatial resolution at 5 mm radial offset from the central axis of the scanner is 6.81 µl, whereas a peak absolute sensitivity of 2.99% was achieved using a 250-650 keV energy window and a 10 ns timing window. The peak noise-equivalent count rate (NECR) using a mouse-like phantom is 113.18 kcps at 0.34 KBq/cc with 12.5% scatter fraction, whereas the NECR peaked at 82.76 kcps for an activity concentration level of 0.048 KBq/cc with a scatter fraction of 25.8% for rat-like phantom. An excellent uniformity (3.8%) was obtained using NEMA image quality phantom. Recovery coefficients of 90%, 86%, 68%, 40% and 12% were calculated for rod diameters of 5, 4, 3, 2 and 1 mm, respectively. Spill-over ratios for air-filled and water-filled chambers were 35% and 25% without applying any correction for attenuation and Compton scattering effects. CONCLUSION: Our findings revealed that beyond compactness, lightweight, easy installation and good energy resolution, the Xtrim-PET prototype presents a reasonable performance making it suitable for preclinical molecular imaging-based research.


Assuntos
Fótons , Tomografia por Emissão de Pósitrons/instrumentação , Silício , Animais , Desenho de Equipamento , Camundongos , Fenômenos Ópticos , Imagens de Fantasmas , Ratos , Razão Sinal-Ruído
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA