Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 184(18): 4784-4818.e17, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34450027

RESUMO

Osteoarthritis affects over 300 million people worldwide. Here, we conduct a genome-wide association study meta-analysis across 826,690 individuals (177,517 with osteoarthritis) and identify 100 independently associated risk variants across 11 osteoarthritis phenotypes, 52 of which have not been associated with the disease before. We report thumb and spine osteoarthritis risk variants and identify differences in genetic effects between weight-bearing and non-weight-bearing joints. We identify sex-specific and early age-at-onset osteoarthritis risk loci. We integrate functional genomics data from primary patient tissues (including articular cartilage, subchondral bone, and osteophytic cartilage) and identify high-confidence effector genes. We provide evidence for genetic correlation with phenotypes related to pain, the main disease symptom, and identify likely causal genes linked to neuronal processes. Our results provide insights into key molecular players in disease processes and highlight attractive drug targets to accelerate translation.


Assuntos
Predisposição Genética para Doença , Genética Populacional , Osteoartrite/genética , Feminino , Estudo de Associação Genômica Ampla , Humanos , Osteoartrite/tratamento farmacológico , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Fatores de Risco , Caracteres Sexuais , Transdução de Sinais/genética
2.
Cell ; 179(4): 984-1002.e36, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31675503

RESUMO

Genomic studies in African populations provide unique opportunities to understand disease etiology, human diversity, and population history. In the largest study of its kind, comprising genome-wide data from 6,400 individuals and whole-genome sequences from 1,978 individuals from rural Uganda, we find evidence of geographically correlated fine-scale population substructure. Historically, the ancestry of modern Ugandans was best represented by a mixture of ancient East African pastoralists. We demonstrate the value of the largest sequence panel from Africa to date as an imputation resource. Examining 34 cardiometabolic traits, we show systematic differences in trait heritability between European and African populations, probably reflecting the differential impact of genes and environment. In a multi-trait pan-African GWAS of up to 14,126 individuals, we identify novel loci associated with anthropometric, hematological, lipid, and glycemic traits. We find that several functionally important signals are driven by Africa-specific variants, highlighting the value of studying diverse populations across the region.


Assuntos
População Negra/genética , Predisposição Genética para Doença , Genoma Humano/genética , Genômica , Feminino , Frequência do Gene/genética , Estudo de Associação Genômica Ampla , Humanos , Masculino , Polimorfismo de Nucleotídeo Único/genética , Uganda/epidemiologia , Sequenciamento Completo do Genoma
4.
Nature ; 627(8003): 347-357, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38374256

RESUMO

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes1,2 and molecular mechanisms that are often specific to cell type3,4. Here, to characterize the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study data from 2,535,601 individuals (39.7% not of European ancestry), including 428,452 cases of T2D. We identify 1,289 independent association signals at genome-wide significance (P < 5 × 10-8) that map to 611 loci, of which 145 loci are, to our knowledge, previously unreported. We define eight non-overlapping clusters of T2D signals that are characterized by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type-specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial cells and enteroendocrine cells. We build cluster-specific partitioned polygenic scores5 in a further 279,552 individuals of diverse ancestry, including 30,288 cases of T2D, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned polygenic scores are associated with coronary artery disease, peripheral artery disease and end-stage diabetic nephropathy across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings show the value of integrating multi-ancestry genome-wide association study data with single-cell epigenomics to disentangle the aetiological heterogeneity that drives the development and progression of T2D. This might offer a route to optimize global access to genetically informed diabetes care.


Assuntos
Diabetes Mellitus Tipo 2 , Progressão da Doença , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Humanos , Adipócitos/metabolismo , Cromatina/genética , Cromatina/metabolismo , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/genética , Diabetes Mellitus Tipo 2/classificação , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Diabetes Mellitus Tipo 2/fisiopatologia , Nefropatias Diabéticas/complicações , Nefropatias Diabéticas/genética , Células Endoteliais/metabolismo , Células Enteroendócrinas , Epigenômica , Predisposição Genética para Doença/genética , Ilhotas Pancreáticas/metabolismo , Herança Multifatorial/genética , Doença Arterial Periférica/complicações , Doença Arterial Periférica/genética , Análise de Célula Única
5.
Hum Mol Genet ; 32(8): 1266-1275, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36349687

RESUMO

Cardiometabolic diseases, such as type 2 diabetes and cardiovascular disease, have a high public health burden. Understanding the genetically determined regulation of proteins that are dysregulated in disease can help to dissect the complex biology underpinning them. Here, we perform a protein quantitative trait locus (pQTL) analysis of 248 serum proteins relevant to cardiometabolic processes in 2893 individuals. Meta-analyzing whole-genome sequencing (WGS) data from two Greek cohorts, MANOLIS (n = 1356; 22.5× WGS) and Pomak (n = 1537; 18.4× WGS), we detect 301 independently associated pQTL variants for 170 proteins, including 12 rare variants (minor allele frequency < 1%). We additionally find 15 pQTL variants that are rare in non-Finnish European populations but have drifted up in the frequency in the discovery cohorts here. We identify proteins causally associated with cardiometabolic traits, including Mep1b for high-density lipoprotein (HDL) levels, and describe a knock-out (KO) Mep1b mouse model. Our findings furnish insights into the genetic architecture of the serum proteome, identify new protein-disease relationships and demonstrate the importance of isolated populations in pQTL analysis.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Animais , Camundongos , Fenótipo , Sequenciamento Completo do Genoma , Proteínas Sanguíneas/genética , Estudo de Associação Genômica Ampla
6.
Am J Hum Genet ; 109(7): 1255-1271, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35679866

RESUMO

Osteoarthritis is a complex degenerative joint disease. Here, we investigate matched genotype and methylation profiles of primary chondrocytes from macroscopically intact (low-grade) and degraded (high-grade) osteoarthritis cartilage and from synoviocytes collected from 98 osteoarthritis-affected individuals undergoing knee replacement surgery. We perform an epigenome-wide association study of knee cartilage degeneration and report robustly replicating methylation markers, which reveal an etiologic mechanism linked to the migration of epithelial cells. Using machine learning, we derive methylation models of cartilage degeneration, which we validate with 82% accuracy in independent data. We report a genome-wide methylation quantitative trait locus (mQTL) map of articular cartilage and synovium and identify 18 disease-grade-specific mQTLs in osteoarthritis cartilage. We resolve osteoarthritis GWAS loci through causal inference and colocalization analyses and decipher the epigenetic mechanisms that mediate the effect of genotype on disease risk. Together, our findings provide enhanced insights into epigenetic mechanisms underlying osteoarthritis in primary tissues.


Assuntos
Cartilagem Articular , Osteoartrite , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Metilação de DNA/genética , Epigenoma , Humanos , Osteoartrite/genética , Osteoartrite/metabolismo
7.
Int J Mol Sci ; 23(16)2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-36012474

RESUMO

The formation of pathological bone deposits within soft tissues, termed heterotopic ossification (HO), is common after trauma. However, the severity of HO formation varies substantially between individuals, from relatively isolated small bone islands through to extensive soft tissue replacement by bone giving rise to debilitating symptoms. The aim of this study was to identify novel candidate therapeutic molecular targets for severe HO. We conducted a genome-wide scan in men and women with HO of varying severity following hip replacement for osteoarthritis. HO severity was dichotomized as mild or severe, and association analysis was performed with adjustment for age and sex. We next confirmed expression of the gene encoded by the lead signal in human bone and in primary human mesenchymal stem cells. We then examined the effect of gene knockout in a murine model of osseous trans-differentiation, and finally we explored transcription factor phosphorylation in key pathways perturbed by the gene. Ten independent signals were suggestively associated with HO severity, with KIF26B as the lead. We subsequently confirmed KIF26B expression in human bone and upregulation upon BMP2-induced osteogenic differentiation in primary human mesenchymal stem cells, and also in a rat tendo-Achilles model of post-traumatic HO. CRISPR-Cas9 mediated knockout of Kif26b inhibited BMP2-induced Runx2, Sp7/Osterix, Col1A1, Alp, and Bglap/Osteocalcin expression and mineralized nodule formation in a murine myocyte model of osteogenic trans-differentiation. Finally, KIF26B deficiency inhibited ERK MAP kinase activation during osteogenesis, whilst augmenting p38 and SMAD 1/5/8 phosphorylation. Taken together, these data suggest a role for KIF26B in modulating the severity of post-traumatic HO and provide a potential novel avenue for therapeutic translation.


Assuntos
Cinesinas , Ossificação Heterotópica , Osteogênese , Animais , Diferenciação Celular/genética , Feminino , Humanos , Cinesinas/genética , Masculino , Camundongos , Ossificação Heterotópica/genética , Ossificação Heterotópica/metabolismo , Osteocalcina/metabolismo , Osteogênese/genética , Ratos
8.
Nature ; 517(7534): 327-32, 2015 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-25470054

RESUMO

Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.


Assuntos
Variação Genética/genética , Genética Médica/tendências , Genoma Humano/genética , Genômica/tendências , África , África Subsaariana , Ásia/etnologia , Europa (Continente)/etnologia , Humanos , Fatores de Risco , Seleção Genética/genética
9.
Bioinformatics ; 35(15): 2555-2561, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30576415

RESUMO

MOTIVATION: Very low-depth sequencing has been proposed as a cost-effective approach to capture low-frequency and rare variation in complex trait association studies. However, a full characterization of the genotype quality and association power for very low-depth sequencing designs is still lacking. RESULTS: We perform cohort-wide whole-genome sequencing (WGS) at low depth in 1239 individuals (990 at 1× depth and 249 at 4× depth) from an isolated population, and establish a robust pipeline for calling and imputing very low-depth WGS genotypes from standard bioinformatics tools. Using genotyping chip, whole-exome sequencing (75× depth) and high-depth (22×) WGS data in the same samples, we examine in detail the sensitivity of this approach, and show that imputed 1× WGS recapitulates 95.2% of variants found by imputed GWAS with an average minor allele concordance of 97% for common and low-frequency variants. In our study, 1× further allowed the discovery of 140 844 true low-frequency variants with 73% genotype concordance when compared to high-depth WGS data. Finally, using association results for 57 quantitative traits, we show that very low-depth WGS is an efficient alternative to imputed GWAS chip designs, allowing the discovery of up to twice as many true association signals than the classical imputed GWAS design. AVAILABILITY AND IMPLEMENTATION: The HELIC genotype and WGS datasets have been deposited to the European Genome-phenome Archive (https://www.ebi.ac.uk/ega/home): EGAD00010000518; EGAD00010000522; EGAD00010000610; EGAD00001001636, EGAD00001001637. The peakplotter software is available at https://github.com/wtsi-team144/peakplotter, the transformPhenotype app can be downloaded at https://github.com/wtsi-team144/transformPhenotype. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Polimorfismo de Nucleotídeo Único , Genótipo , Humanos , Herança Multifatorial , Sequenciamento Completo do Genoma
10.
Hum Mol Genet ; 26(19): 3850-3858, 2017 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-28934396

RESUMO

Osteoarthritis (OA) is a common complex disease with high public health burden and no curative therapy. High bone mineral density (BMD) is associated with an increased risk of developing OA, suggesting a shared underlying biology. Here, we performed the first systematic overlap analysis of OA and BMD on a genome wide scale. We used summary statistics from the GEFOS consortium for lumbar spine (n = 31,800) and femoral neck (n = 32,961) BMD, and from the arcOGEN consortium for three OA phenotypes (hip, ncases=3,498; knee, ncases=3,266; hip and/or knee, ncases=7,410; ncontrols=11,009). Performing LD score regression we found a significant genetic correlation between the combined OA phenotype (hip and/or knee) and lumbar spine BMD (rg=0.18, P = 2.23 × 10-2), which may be driven by the presence of spinal osteophytes. We identified 143 variants with evidence for cross-phenotype association which we took forward for replication in independent large-scale OA datasets, and subsequent meta-analysis with arcOGEN for a total sample size of up to 23,425 cases and 236,814 controls. We found robustly replicating evidence for association with OA at rs12901071 (OR 1.08 95% CI 1.05-1.11, Pmeta=3.12 × 10-10), an intronic variant in the SMAD3 gene, which is known to play a role in bone remodeling and cartilage maintenance. We were able to confirm expression of SMAD3 in intact and degraded cartilage of the knee and hip. Our findings provide the first systematic evaluation of pleiotropy between OA and BMD, highlight genes with biological relevance to both traits, and establish a robust new OA genetic risk locus at SMAD3.


Assuntos
Densidade Óssea/genética , Osteoartrite/genética , Proteína Smad3/genética , Bases de Dados de Ácidos Nucleicos , Colo do Fêmur/química , Colo do Fêmur/fisiologia , Estudos de Associação Genética/métodos , Pleiotropia Genética/genética , Humanos , Vértebras Lombares/fisiologia , Osteoartrite/etiologia , Osteoartrite do Quadril/genética , Osteoartrite do Joelho/genética , Fatores de Risco , Proteína Smad3/metabolismo
11.
Clin Orthop Relat Res ; 477(2): 297-309, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30794219

RESUMO

BACKGROUND: Periprosthetic osteolysis resulting in aseptic loosening is a leading cause of THA revision. Individuals vary in their susceptibility to osteolysis and heritable factors may contribute to this variation. However, the overall contribution that such variation makes to osteolysis risk is unknown. QUESTIONS/PURPOSES: We conducted two genome-wide association studies to (1) identify genetic risk loci associated with susceptibility to osteolysis; and (2) identify genetic risk loci associated with time to prosthesis revision for osteolysis. METHODS: The Norway cohort comprised 2624 patients after THA recruited from the Norwegian Arthroplasty Registry, of whom 779 had undergone revision surgery for osteolysis. The UK cohort included 890 patients previously recruited from hospitals in the north of England, 317 who either had radiographic evidence of and/or had undergone revision surgery for osteolysis. All participants had received a fully cemented or hybrid THA using a small-diameter metal or ceramic-on-conventional polyethylene bearing. Osteolysis susceptibility case-control analyses and quantitative trait analyses for time to prosthesis revision (a proxy measure of the speed of osteolysis onset) in those patients with osteolysis were undertaken in each cohort separately after genome-wide genotyping. Finally, a meta-analysis of the two independent cohort association analysis results was undertaken. RESULTS: Genome-wide association analysis identified four independent suggestive genetic signals for osteolysis case-control status in the Norwegian cohort and 11 in the UK cohort (p ≤ 5 x 10). After meta-analysis, five independent genetic signals showed a suggestive association with osteolysis case-control status at p ≤ 5 x 10 with the strongest comprising 18 correlated variants on chromosome 7 (lead signal rs850092, p = 1.13 x 10). Genome-wide quantitative trait analysis in cases only showed a total of five and nine independent genetic signals for time to revision at p ≤ 5 x 10, respectively. After meta-analysis, 11 independent genetic signals showed suggestive evidence of an association with time to revision at p ≤ 5 x 10 with the largest association block comprising 174 correlated variants in chromosome 15 (lead signal rs10507055, p = 1.40 x 10). CONCLUSIONS: We explored the heritable biology of osteolysis at the whole genome level and identify several genetic loci that associate with susceptibility to osteolysis or with premature revision surgery. However, further studies are required to determine a causal association between the identified signals and osteolysis and their functional role in the disease. CLINICAL RELEVANCE: The identification of novel genetic risk loci for osteolysis enables new investigative avenues for clinical biomarker discovery and therapeutic intervention in this disease.


Assuntos
Artroplastia de Quadril/efeitos adversos , Artroplastia de Quadril/instrumentação , Loci Gênicos , Articulação do Quadril/cirurgia , Prótese de Quadril , Osteólise/genética , Falha de Prótese , Idoso , Distinções e Prêmios , Estudos de Casos e Controles , Feminino , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Articulação do Quadril/fisiopatologia , Humanos , Masculino , Pessoa de Meia-Idade , Noruega , Osteólise/diagnóstico , Osteólise/fisiopatologia , Osteólise/cirurgia , Desenho de Prótese , Sistema de Registros , Reoperação , Fatores de Risco , Fatores de Tempo , Tempo para o Tratamento , Resultado do Tratamento , Reino Unido
12.
Ann Rheum Dis ; 77(4): 620-623, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29436472

RESUMO

OBJECTIVES: Osteoarthritis (OA) is a complex disease, but its genetic aetiology remains poorly characterised. To identify novel susceptibility loci for OA, we carried out a genome-wide association study (GWAS) in individuals from the largest UK-based OA collections to date. METHODS: We carried out a discovery GWAS in 5414 OA individuals with knee and/or hip total joint replacement (TJR) and 9939 population-based controls. We followed-up prioritised variants in OA subjects from the interim release of the UK Biobank resource (up to 12 658 cases and 50 898 controls) and our lead finding in operated OA subjects from the full release of UK Biobank (17 894 cases and 89 470 controls). We investigated its functional implications in methylation, gene expression and proteomics data in primary chondrocytes from 12 pairs of intact and degraded cartilage samples from patients undergoing TJR. RESULTS: We detect a genome-wide significant association at rs10116772 with TJR (P=3.7×10-8; for allele A: OR (95% CI) 0.97 (0.96 to 0.98)), an intronic variant in GLIS3, which is expressed in cartilage. Variants in strong correlation with rs10116772 have been associated with elevated plasma glucose levels and diabetes. CONCLUSIONS: We identify a novel susceptibility locus for OA that has been previously implicated in diabetes and glycaemic traits.


Assuntos
Predisposição Genética para Doença/genética , Variação Genética/genética , Osteoartrite do Quadril/genética , Osteoartrite do Joelho/genética , Fatores de Transcrição/genética , Adulto , Artroplastia de Quadril , Artroplastia do Joelho , Cartilagem/metabolismo , Estudos de Casos e Controles , Condrócitos , Metilação de DNA , Proteínas de Ligação a DNA , Feminino , Expressão Gênica , Estudo de Associação Genômica Ampla , Humanos , Masculino , Osteoartrite do Quadril/cirurgia , Osteoartrite do Joelho/cirurgia , Proteômica , Proteínas Repressoras , Transativadores
13.
Rheumatology (Oxford) ; 57(8): 1481-1489, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29741735

RESUMO

Objectives: To identify molecular differences between chondrocytes from osteophytic and articular cartilage tissue from OA patients. Methods: We investigated genes and pathways by combining genome-wide DNA methylation, RNA sequencing and quantitative proteomics in isolated primary chondrocytes from the cartilaginous layer of osteophytes and matched areas of low- and high-grade articular cartilage across nine patients with OA undergoing hip replacement surgery. Results: Chondrocytes from osteophytic cartilage showed widespread differences to low-grade articular cartilage chondrocytes. These differences were similar to, but more pronounced than, differences between chondrocytes from osteophytic and high-grade articular cartilage, and more pronounced than differences between high- and low-grade articular cartilage. We identified 56 genes with significant differences between osteophytic chondrocytes and low-grade articular cartilage chondrocytes on all three omics levels. Several of these genes have known roles in OA, including ALDH1A2 and cartilage oligomeric matrix protein, which have functional genetic variants associated with OA from genome-wide association studies. An integrative gene ontology enrichment analysis showed that differences between osteophytic and low-grade articular cartilage chondrocytes are associated with extracellular matrix organization, skeletal system development, platelet aggregation and regulation of ERK1 and ERK2 cascade. Conclusion: We present a first comprehensive view of the molecular landscape of chondrocytes from osteophytic cartilage as compared with articular cartilage chondrocytes from the same joints in OA. We found robust changes at genes relevant to chondrocyte function, providing insight into biological processes involved in osteophyte development and thus OA progression.


Assuntos
Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Epigenômica/métodos , Estudo de Associação Genômica Ampla , Osteoartrite do Quadril/genética , Proteômica/métodos , RNA/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Cartilagem Articular/patologia , Condrócitos/patologia , Cromatografia Líquida , Metilação de DNA , Feminino , Humanos , Masculino , Espectrometria de Massas , Pessoa de Meia-Idade , Osteoartrite do Quadril/metabolismo , Osteoartrite do Quadril/patologia
14.
J Sports Sci ; 36(2): 131-139, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-28282755

RESUMO

The study examined the differences between boys and adults after an intense stretch-shortening cycle fatigue protocol on neuromechanical parameters of the lower limb. Thirteen boys (9-11 years old) and 13 adult men (22-28 years old) were tested for maximal isometric voluntary knee extension torque and drop jump (DJ) performance from 30 cm before and immediately after a fatigue protocol, consisted of 10 × 10 maximum effort vertical jumps. Three-dimensional kinematics, kinetics and electromyographic (EMG) parameters of the lower extremities muscles were recorded during DJs before and after the fatigue test. The results indicated that reduction in maximal isometric torque and jumping performance was significantly higher in adults compared to boys. Vertical ground reaction forces, contact time and maximum knee flexion increased in a greater extend in adults than in boys. In addition, preactivation, EMG agonist activity, knee joint stiffness and stretch reflex decreased more in adults than in boys at all the examined phases of jumping tasks. It is concluded that employed fatigue protocol induced acute reduction in performance and altered motor control during jumping in both age groups. However, the differences in the level of fatigue between the 2 groups could be attributed to neuromuscular, mechanical and kinematic parameters observed between groups.


Assuntos
Extremidade Inferior/fisiologia , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Exercício Pliométrico , Adulto , Fatores Etários , Fenômenos Biomecânicos , Criança , Eletromiografia , Humanos , Cinética , Extremidade Inferior/inervação , Masculino , Neurônios Motores/fisiologia , Músculo Esquelético/inervação , Adulto Jovem
16.
J Sports Sci Med ; 13(4): 724-30, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25435762

RESUMO

The aim of this study was to investigate the effect of fatigue on electromyographic (EMG) parameters of healthy young adults during obstacle crossing of two different heights. Twelve untrained male adults (23 ± 5 years of age) were fatigued running on a treadmill with increasing speed and inclination and walked over an obstacle with a height set at 10% and 20% of each individual's lower limb length. Maximal plantar flexor torque and EMG of the medial gastrocnemius, soleus, and tibialis anterior muscles of the trailing limb were assessed during obstacle crossing. Data were captured before, immediately after and 5 minutes after a fatigue session. Fatigue induced significant reduction on the plantar flexor torque output immediately after and 5 minutes after exhaustion. After fatigue gait speed was not affected, the minimum distance between the obstacle and the trailing or leading foot remained unchanged, and the trailing foot contacted the ground closer to the obstacle immediately after fatigue. Regarding the EMG, medial gastrocnemius became after fatigue more active during swing phase when increasing the obstacle height, whereas this was not the case before or 5 minutes after fatigue. No other significant difference was observed for any of the examined muscles. It is concluded that the assessed fatigue protocol induced only minimal changes in the EMG activity of the examined muscles during obstacle crossing. Therefore, it is suggested that the neuromuscular system of healthy young individuals is able to respond to the decreased force capacity after fatigue during obstacle crossing of heights up to the 20% of the limb length. Key PointsExhaustion after running on a treadmill induces significant reduction in plantar flexion strength and changes in the positioning of the feet relative to the obstacle during obstacle crossing.EMG activity of the calf muscles of the trailing limb does not change significantly after fatigue during the stance phaseDuring swing phase, medial gastrocnemius EMG activity of the trailing limb increases after fatigue when obstacle height increases.These minor changes in EMG after fatigue, reveals that untrained, healthy, young subjects may compensate the deficit in muscular force due to fatigue when performing obstacle crossing.

17.
medRxiv ; 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39072045

RESUMO

Discerning the mechanisms driving type 2 diabetes (T2D) pathophysiology from genome-wide association studies (GWAS) remains a challenge. To this end, we integrated omics information from 16 multi-tissue and multi-ancestry expression, protein, and metabolite quantitative trait loci (QTL) studies and 46 multi-ancestry GWAS for T2D-related traits with the largest, most ancestrally diverse T2D GWAS to date. Of the 1,289 T2D GWAS index variants, 716 (56%) demonstrated strong evidence of colocalization with a molecular or T2D-related trait, implicating 657 cis-effector genes, 1,691 distal-effector genes, 731 metabolites, and 43 T2D-related traits. We identified 773 of these cis- and distal-effector genes using either expression QTL data from understudied ancestry groups or inclusion of T2D index variants enriched in underrepresented populations, emphasizing the value of increasing population diversity in functional mapping. Linking these variants, genes, metabolites, and traits into a network, we elucidated mechanisms through which T2D-associated variation may impact disease risk. Finally, we showed that drugs targeting effector proteins were enriched in those approved to treat T2D, highlighting the potential of these results to prioritize drug targets for T2D. These results represent a leap in the molecular characterization of T2D-associated genetic variation and will aid in translating genetic findings into novel therapeutic strategies.

18.
Pediatr Exerc Sci ; 25(1): 101-13, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23406698

RESUMO

This study examines the biomechanical differences during different vertical jump tasks in 12 prepubescent and 12 adult males. The sagittal knee kinematics, vertical ground reaction force (vGRF) and electromyographic (EMG) activity of 5 lower extremity muscles were recorded. Compared with boys, men presented higher peak vGRF during the propulsive phase in all examined jumps, but lower values during the braking phase, even when related to body mass. Normalized EMG agonist activity in all phases was higher in men (p < .05), while antagonist coactivation was enhanced in boys (p < .05). The knee joint was on average 9 degrees more flexed at touchdown in men during drop jump tasks, but boys exhibited 12 degrees and 17 degrees higher knee flexion at the deepest point when performing drop jump from 20 and 40 cm, respectively. In conclusion, the performance deficit observed in boys in all jump types is a reflection of their immature technique, which could be partly attributed to the less efficient stiffness regulation and activation of their neuromuscular system.


Assuntos
Extremidade Inferior/fisiologia , Movimento/fisiologia , Músculo Esquelético/fisiologia , Adulto , Fatores Etários , Análise de Variância , Fenômenos Biomecânicos/fisiologia , Peso Corporal , Criança , Eletromiografia , Humanos , Articulação do Joelho/fisiologia , Masculino , Contração Muscular , Adulto Jovem
19.
medRxiv ; 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37034649

RESUMO

Type 2 diabetes (T2D) is a heterogeneous disease that develops through diverse pathophysiological processes. To characterise the genetic contribution to these processes across ancestry groups, we aggregate genome-wide association study (GWAS) data from 2,535,601 individuals (39.7% non-European ancestry), including 428,452 T2D cases. We identify 1,289 independent association signals at genome-wide significance (P<5×10-8) that map to 611 loci, of which 145 loci are previously unreported. We define eight non-overlapping clusters of T2D signals characterised by distinct profiles of cardiometabolic trait associations. These clusters are differentially enriched for cell-type specific regions of open chromatin, including pancreatic islets, adipocytes, endothelial, and enteroendocrine cells. We build cluster-specific partitioned genetic risk scores (GRS) in an additional 137,559 individuals of diverse ancestry, including 10,159 T2D cases, and test their association with T2D-related vascular outcomes. Cluster-specific partitioned GRS are more strongly associated with coronary artery disease and end-stage diabetic nephropathy than an overall T2D GRS across ancestry groups, highlighting the importance of obesity-related processes in the development of vascular outcomes. Our findings demonstrate the value of integrating multi-ancestry GWAS with single-cell epigenomics to disentangle the aetiological heterogeneity driving the development and progression of T2D, which may offer a route to optimise global access to genetically-informed diabetes care.

20.
Int J Epidemiol ; 51(4): 1254-1267, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34897459

RESUMO

OBJECTIVES: Observational analyses suggest that high bone mineral density (BMD) is a risk factor for osteoarthritis (OA); it is unclear whether this represents a causal effect or shared aetiology and whether these relationships are body mass index (BMI)-independent. We performed bidirectional Mendelian randomization (MR) to uncover the causal pathways between BMD, BMI and OA. METHODS: One-sample (1S)MR estimates were generated by two-stage least-squares regression. Unweighted allele scores instrumented each exposure. Two-sample (2S)MR estimates were generated using inverse-variance weighted random-effects meta-analysis. Multivariable MR (MVMR), including BMD and BMI instruments in the same model, determined the BMI-independent causal pathway from BMD to OA. Latent causal variable (LCV) analysis, using weight-adjusted femoral neck (FN)-BMD and hip/knee OA summary statistics, determined whether genetic correlation explained the causal effect of BMD on OA. RESULTS: 1SMR provided strong evidence for a causal effect of BMD estimated from heel ultrasound (eBMD) on hip and knee OA {odds ratio [OR]hip = 1.28 [95% confidence interval (CI) = 1.05, 1.57], p = 0.02, ORknee = 1.40 [95% CI = 1.20, 1.63], p = 3 × 10-5, OR per standard deviation [SD] increase}. 2SMR effect sizes were consistent in direction. Results suggested that the causal pathways between eBMD and OA were bidirectional (ßhip = 1.10 [95% CI = 0.36, 1.84], p = 0.003, ßknee = 4.16 [95% CI = 2.74, 5.57], p = 8 × 10-9, ß = SD increase per doubling in risk). MVMR identified a BMI-independent causal pathway between eBMD and hip/knee OA. LCV suggested that genetic correlation (i.e. shared genetic aetiology) did not fully explain the causal effects of BMD on hip/knee OA. CONCLUSIONS: These results provide evidence for a BMI-independent causal effect of eBMD on OA. Despite evidence of bidirectional effects, the effect of BMD on OA did not appear to be fully explained by shared genetic aetiology, suggesting a direct action of bone on joint deterioration.


Assuntos
Densidade Óssea , Osteoartrite do Joelho , Índice de Massa Corporal , Densidade Óssea/genética , Causalidade , Estudo de Associação Genômica Ampla , Humanos , Análise da Randomização Mendeliana , Osteoartrite do Joelho/epidemiologia , Osteoartrite do Joelho/genética , Polimorfismo de Nucleotídeo Único
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA