Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Polymers (Basel) ; 14(4)2022 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-35215705

RESUMO

According to the 3-phase model, semi-crystalline thermoplastics consist of a mobile amorphous fraction (MAF), a rigid amorphous fraction (RAF), and a crystalline fraction (CF). For the two polyesters Polybutylene Terephthalate (PBT) and Polyethylene Terephthalate (PET), the composition of these phases was investigated using the largest possible variation in the isothermal and non-isothermal boundary conditions. This was performed by combining the conventional Differential Scanning Calorimetry (DSC) with the Fast Scanning Calorimetry (FSC). From the results it can be deduced that the structural composition of both polymers is characterised by a large fraction of the rigid amorphous phase. This is mainly formed either during the primary crystallization in the low temperature range or during the subsequent secondary crystallization that follows primary crystallization in the high temperature range. Depending on the thermal history, the fraction of the mobile amorphous phase of both polymers approaches a minimum, which does not appear to be undercut.

2.
Polymers (Basel) ; 13(19)2021 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-34641047

RESUMO

A multiscale simulation method for the determination of mechanical properties of semi-crystalline polymers is presented. First, a four-phase model of crystallization of semi-crystalline polymers is introduced, which is based on the crystallization model of Strobl. From this, a simulation on the nanoscale is derived, which models the formation of lamellae and spherulites during the cooling of the polymer by using a cellular automaton. In the solidified state, mechanical properties are assigned to the formed phases and thus the mechanical behavior of the nanoscale is determined by a finite element (FE) simulation. At this scale, simulations can only be performed up to a simulation range of a few square micrometers. Therefore, the dependence of the mechanical properties on the degree of crystallization is determined by means of homogenization. At the microscale, the cooling of the polymer is simulated by a cellular automaton according to evolution equations. In combination with the mechanical properties determined by homogenization, the mechanical behavior of a macroscopic component can be predicted.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA