Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 223
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Gastroenterology ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992449

RESUMO

BACKGROUND & AIMS: Primary sclerosing cholangitis (PSC), often associated with inflammatory bowel disease (IBD), presents a multifactorial etiology involving genetic, immunological, and environmental factors. Gut dysbiosis and bacterial translocation have been implicated in PSC-IBD, yet the precise mechanisms underlying their pathogenesis remain elusive. Here, we describe the role of gut pathobionts in promoting liver inflammation and fibrosis due to the release of bacterial outer membrane vesicles (OMVs). METHODS: Preclinical mouse models in addition to ductal organoids were used to acquire mechanistic data. A proof-of-concept study including serum and liver biopsies of a patient cohort of PSC (n=22), PSC-IBD (n=45) and control individuals (n=27) was performed to detect OMVs in the systemic circulation and liver. RESULTS: In both, preclinical model systems and in human PSC-IBD patients, the translocation of OMVs to the liver correlated with enhanced bacterial sensing and accumulation of the NLRP3 inflammasome. Using ductal organoids, we were able to precisely attribute the pro-inflammatory and pro-fibrogenic properties of OMVs to signaling pathways dependent on TLR4 and NLRP3-GSDMD. The immunostimulatory potential of OMVs could be confirmed in macrophages and hepatic stellate cells. Furthermore, when we administered gut pathobiont-derived OMVs to Mdr2-/- mice, we observed a significant enhancement in liver inflammation and fibrosis. In a translational approach, we substantiated the presence of OMVs in the systemic circulation and hepatic regions of severe fibrosis using a PSC-IBD patient cohort. CONCLUSION: This study demonstrates the contribution of gut pathobionts in releasing OMVs that traverse the mucosal barrier, and thus, promote liver inflammation and fibrosis in PSC-IBD. OMVs might represent a critical new environmental factor that interacts with other disease factors to cause inflammation and thus define potential new targets for fibrosis therapy.

2.
Planta Med ; 89(12): 1138-1146, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37343573

RESUMO

Nonalcoholic fatty liver disease (NAFLD) is emerging as leading cause of liver disease worldwide. Specific pharmacologic therapy for NAFLD is a major unmet medical need. Recently, iso-alpha acids, hop-derived bitter compounds in beer, have been shown to beneficially affect NAFLD pathology. Humulinones are further hop derived bitter acids particularly found in modern styles of beer. So far, biological effects of humulinones have been unknown. Here, we investigated the effect of humulinones in in vitro models for hepatic steatosis, inflammation and fibrosis. Humulinones dose-dependently inhibited fatty acid induced lipid accumulation in primary human hepatocytes. Humulinones reduced the expression of fatty acid uptake transporter CD36 and key enzymes of (de novo) lipid synthesis. Conversely, humulinones increased the expression of FABP1, CPT1 and ACOX1, indicative for increased lipid combustion. Furthermore, humulinones ameliorated steatosis induced pro-inflammatory gene expression. Furthermore, humulinones significantly reduced the expression of pro-inflammatory and pro-fibrogenic factors in control as well as lipopolysaccharide treated activated hepatic stellate cells, which play a key role in hepatic fibrosis. In conclusion, humulinones beneficially affect different pathophysiological steps of NAFLD. Our data suggest humulinones as promising therapeutic agents for the prevention and treatment of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/metabolismo , Inflamação/tratamento farmacológico , Inflamação/patologia , Hepatócitos/metabolismo , Hepatócitos/patologia , Cirrose Hepática/induzido quimicamente , Cirrose Hepática/tratamento farmacológico , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Fígado
3.
Int J Mol Sci ; 24(13)2023 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-37446238

RESUMO

Activated hepatic stellate cells (HSCs) play a key role in hepatic fibrosis and, thus, build the "soil" for hepatocarcinogenesis. Furthermore, HSCs are known to promote the progression of hepatocellular carcinoma (HCC), but the molecular mechanisms are only incompletely understood. Recently, we newly described the expression of bone morphogenetic protein 13 (BMP13) by HSCs in fibrotic liver tissue. In addition, BMP13 has mostly been studied in the context of cartilage and bone repair, but not in liver disease or cancer. Thus, we aimed to analyze the expression and function of BMP13 in HCC. Expression analyses revealed high BMP13-expression in activated human HSCs, but not in human HCC-cell-lines. Furthermore, analysis of human HCC tissues showed a significant correlation between BMP13 and α-smooth muscle actin (α-SMA), and immunofluorescence staining confirmed the co-localization of BMP13 and α-SMA, indicating activated HSCs as the cellular source of BMP13 in HCC. Stimulation of HCC cells with recombinant BMP13 increased the expression of the inhibitors of differentiation 1 (ID1) and 2 (ID2), which are known targets of BMP-signaling and cell-cycle promotors. In line with this, BMP13-stimulation caused an induced SMAD 1/5/9 and extracellular signal-regulated kinase (ERK) phosphorylation, as well as reduced expression of cyclin-dependent kinase inhibitors 1A (CDKN1A) and 2A (CDKN2A). Furthermore, stimulation with recombinant BMP13 led to increased proliferation and colony size formation of HCC cells in clonogenicity assays. The protumorigenic effects of BMP13 on HCC cells were almost completely abrogated by the small molecule dorsomorphin 1 (DMH1), which selectively blocks the intracellular kinase domain of ALK2 and ALK3, indicating that BMP13 acts via these BMP type I receptors on HCC cells. In summary, this study newly identifies stroma-derived BMP13 as a potential new tumor promotor in HCC and indicates this secreted growth-factor as a possible novel therapeutic target in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Linhagem Celular Tumoral , Células Estreladas do Fígado/metabolismo , Proteínas Morfogenéticas Ósseas/metabolismo , Proliferação de Células
4.
Int J Mol Sci ; 24(19)2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37834391

RESUMO

Obesity is characterized by the expansion of the adipose tissue, usually accompanied by inflammation, with a prominent role of macrophages infiltrating the visceral adipose tissue (VAT). This chronic inflammation is a major driver of obesity-associated comorbidities. Four-and-a-half LIM-domain protein 2 (FHL2) is a multifunctional adaptor protein that is involved in the regulation of various biological functions and the maintenance of the homeostasis of different tissues. In this study, we aimed to gain new insights into the expression and functional role of FHL2 in VAT in diet-induced obesity. We found enhanced FHL2 expression in the VAT of mice with Western-type diet (WTD)-induced obesity and obese humans and identified macrophages as the cellular source of enhanced FHL2 expression in VAT. In mice with FHL2 deficiency (FHL2KO), WTD feeding resulted in reduced body weight gain paralleled by enhanced energy expenditure and uncoupling protein 1 (UCP1) expression, indicative of activated thermogenesis. In human VAT, FHL2 was inversely correlated with UCP1 expression. Furthermore, macrophage infiltration and the expression of the chemokine MCP-1, a known promotor of macrophage accumulation, was significantly reduced in WTD-fed FHL2KO mice compared with wild-type (wt) littermates. While FHL2 depletion did not affect the differentiation or lipid metabolism of adipocytes in vitro, FHL2 depletion in macrophages resulted in reduced expressions of MCP-1 and the neuropeptide Y (NPY). Furthermore, WTD-fed FHL2KO mice showed reduced NPY expression in VAT compared with wt littermates, and NPY expression was enhanced in VAT resident macrophages of obese individuals. Stimulation with recombinant NPY induced not only UCP1 expression and lipid accumulation but also MCP-1 expression in adipocytes. Collectively, these findings indicate that FHL2 is a positive regulator of NPY and MCP-1 expression in macrophages and herewith closely linked to the mechanism of obesity-associated lipid accumulation and inflammation in VAT. Thus, FHL2 appears as a potential novel target to interfere with the macrophage-adipocyte crosstalk in VAT for treating obesity and related metabolic disorders.


Assuntos
Gordura Intra-Abdominal , Neuropeptídeo Y , Animais , Humanos , Camundongos , Tecido Adiposo/metabolismo , Dieta , Dieta Hiperlipídica , Inflamação/metabolismo , Gordura Intra-Abdominal/metabolismo , Proteínas com Homeodomínio LIM/metabolismo , Lipídeos , Macrófagos/metabolismo , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Neuropeptídeo Y/metabolismo , Obesidade/metabolismo , Fatores de Transcrição/metabolismo
5.
J Cell Biochem ; 123(10): 1544-1552, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35442524

RESUMO

Hepatic fibrosis can be considered as a deregulated wound healing process in response to chronic liver injury. Bone morphogenetic protein 13 (BMP13) has been described to promote bone and tendon repair. In this study, we aimed to analyze the expression and function of BMP13 in hepatic fibrosis. We found increased BMP13 expression during the activation of hepatic stellate cells (HSCs), which is known as the key event of hepatic fibrosis. Fitting to this, BMP13 was elevated in murine models of hepatic fibrosis, and immunofluorescence staining showed colocalization of BMP13 and α-smooth muscle actin (α-SMA), a marker for activated HSC, in cirrhotic human liver tissue. BMP13 depletion in activated human HSC reduced the phosphorylation of smad1/5/9 and the expression of the transcription factor inhibitor of differentiation 1 (ID1), a known BMP target gene and profibrogenic factor. Furthermore, BMP13-depletion led to reduced proliferation and downregulation of collagen I α1 (COL1A1) and α-SMA, and, interestingly, also reduced phosphorylation of extracellular signal-regulated kinases (ERK). Conversely, stimulation with recombinant BMP13 induced the phosphorylation of smad1/5/9 and ERK, as well as the proliferation and the expression of ID1, COL1A1, and α-SMA in HSCs. These stimulatory effects were inhibited by dorsomorphin 1, a small-molecule inhibitor of the BMP-type I receptors activin receptor-like kinase-2 and -3, which are both expressed by HSC. In summary, these data indicate increased BMP13 expression in hepatic fibrosis as a profibrogenic factor. Thus, this soluble growth factor might have the potential as a new fibrosis marker and antifibrogenic therapeutic target in patients with chronic liver disease.


Assuntos
Células Estreladas do Fígado , Cirrose Hepática , Animais , Humanos , Camundongos , Proteínas Morfogenéticas Ósseas/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Células Estreladas do Fígado/metabolismo , Cirrose Hepática/metabolismo
6.
Pancreatology ; 22(4): 449-456, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35331647

RESUMO

BACKGROUND: Previous genome-wide association studies (GWAS) identified genome-wide significant risk loci in chronic pancreatitis and investigated underlying disease causing mechanisms by simple overlaps with expression quantitative trait loci (eQTLs), a procedure which may often result in false positive conclusions. METHODS: We conducted a GWAS in 584 non-alcoholic chronic pancreatitis (NACP) patients and 6040 healthy controls. Next, we applied Bayesian colocalization analysis of identified genome-wide significant risk loci from both, our recently published alcoholic chronic pancreatitis (ACP) and the novel NACP dataset, with pancreas eQTLs from the GTEx V8 European cohort to prioritize candidate causal genes and extracted credible sets of shared causal variants. RESULTS: Variants at the CTRC (p = 1.22 × 10-21) and SPINK1 (p = 6.59 × 10-47) risk loci reached genome-wide significance in NACP. CTRC risk variants colocalized with CTRC eQTLs in ACP (PP4 = 0.99, PP4/PP3 = 95.51) and NACP (PP4 = 0.99, PP4/PP3 = 95.46). For both diseases, the 95% credible set of shared causal variants consisted of rs497078 and rs545634. CLDN2-MORC4 risk variants colocalized with CLDN2 eQTLs in ACP (PP4 = 0.98, PP4/PP3 = 42.20) and NACP (PP4 = 0.67, PP4/PP3 = 7.18), probably driven by the shared causal variant rs12688220. CONCLUSIONS: A shared causal CTRC risk variant might unfold its pathogenic effect in ACP and NACP by reducing CTRC expression, while the CLDN2-MORC4 shared causal variant rs12688220 may modify ACP and NACP risk by increasing CLDN2 expression.


Assuntos
Estudo de Associação Genômica Ampla , Pancreatite Alcoólica , Teorema de Bayes , Predisposição Genética para Doença , Humanos , Proteínas Nucleares , Pâncreas , Pancreatite Alcoólica/genética , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Inibidor da Tripsina Pancreática de Kazal/genética
7.
Eur J Nutr ; 61(8): 4155-4166, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35857130

RESUMO

PURPOSE: The aim of the study was to determine if xanthohumol, a prenylated chalcone found in Hop (Humulus lupulus), has anti-inflammatory effects in healthy humans if applied in low doses achievable through dietary intake. METHODS: In a placebo-controlled single-blinded cross-over design study, 14 healthy young men and women either consumed a beverage containing 0.125 mg xanthohumol or a placebo. Peripheral blood mononuclear cells (PBMCs) were isolated before and 1 h after the intake of the beverages. Subsequently, PBMCs were stimulated with or without lipoteichoic acid (LTA) for 24 and 48 h. Concentrations of interleukin-1ß (IL-1ß), interleukin-6 (IL-6) and soluble cluster of differentiation (sCD14) protein were determined in cell culture supernatant. Furthermore, hTLR2 transfected HEK293 cells were stimulated with LTA in the presence or absence of xanthohumol and sCD14. RESULTS: The stimulation of PBMCs with LTA for 24 and 48 h resulted in a significant induction of IL-1ß, IL-6, and sCD14 protein release in PBMCs of both, fasted subjects and subjects after the ingestion of the placebo. In contrast, after ingesting xanthohumol, LTA-dependent induction of IL-1ß, IL-6, and sCD14 protein release from PBMCs was not significantly higher than in unstimulated cells after 48 h. In hTLR2 transfected HEK293 cells xanthohumol significantly suppressed the LTA-dependent activation of cells, an effect attenuated when cells were co-incubated with sCD14. CONCLUSION: The results of our study suggest that an ingestion of low doses of xanthohumol can suppress the LTA-dependent stimulation of PBMCs through mechanisms involving the interaction of CD14 with TLR2. Study registered at ClinicalTrials.gov (NCT04847193, 22.03.2022).


Assuntos
Chalconas , Receptores de Lipopolissacarídeos , Feminino , Humanos , Masculino , Anti-Inflamatórios/farmacologia , Células HEK293 , Interleucina-1beta , Interleucina-6 , Leucócitos Mononucleares/metabolismo , Receptores de Lipopolissacarídeos/genética , Lipopolissacarídeos/farmacologia , Receptor 2 Toll-Like
8.
Int J Mol Sci ; 23(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36293555

RESUMO

Infections with Gram-negative bacteria are still among the leading causes of infection-related deaths. Several studies suggest that the chalcone xanthohumol (XN) found in hop (Humulus lupulus) possesses anti-inflammatory effects. In a single-blinded, placebo controlled randomized cross-over design study we assessed if the oral intake of a single low dose of 0.125 mg of a XN derived through a XN-rich hop extract (75% XN) affects lipopolysaccharide (LPS)-induced immune responses in peripheral blood mononuclear cells (PBMCs) ex vivo in normal weight healthy women (n = 9) (clinicaltrials.gov: NCT04847193) and determined associated molecular mechanisms. LPS-stimulation of PBMCs isolated from participants 1 h after the intake of the placebo for 2 h resulted in a significant induction of pro-inflammatory cytokine release which was significantly attenuated when participants had consumed XN. The XN-dependent attenuation of proinflammatory cytokine release was less pronounced 6 h after the LPS stimulation while the release of sCD14 was significantly reduced at this timepoint. The LPS-dependent activation of hTLR4 transfected HEK293 cells was significantly and dose-dependently suppressed by the XN-rich hop extract which was attenuated when cells were co-challenged with sCD14. Taken together, our results suggest even a one-time intake of low doses of XN consumed in a XN-rich hop extract can suppress LPS-dependent stimulation of PBMCs and that this is related to the interaction of the hop compound with the CD14/TLR4 signaling cascade.


Assuntos
Chalconas , Humulus , Propiofenonas , Humanos , Feminino , Lipopolissacarídeos , Receptores de Lipopolissacarídeos , Receptor 4 Toll-Like , Leucócitos Mononucleares , Endotoxinas , Células HEK293 , Propiofenonas/farmacologia , Flavonoides/farmacologia , Extratos Vegetais/farmacologia , Anti-Inflamatórios/farmacologia , Citocinas
9.
Int J Mol Sci ; 23(19)2022 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-36232829

RESUMO

Hepatic metastasis is the critical factor determining tumor-associated mortality in different types of cancer. This is particularly true for uveal melanoma (UM), which almost exclusively metastasizes to the liver. Hepatic stellate cells (HSCs) are the precursors of tumor-associated fibroblasts and support the growth of metastases. However, the underlying mechanisms are widely unknown. Fibroblast growth factor (FGF) signaling is dysregulated in many types of cancer. The aim of this study was to analyze the pro-tumorigenic effects of HSCs on UM cells and the role of FGFs in this crosstalk. Conditioned medium (CM) from activated human HSCs significantly induced proliferation together with enhanced ERK and JNK activation in UM cells. An in silico database analysis revealed that there are almost no mutations of FGF receptors (FGFR) in UM. However, a high FGFR expression was found to be associated with poor survival for UM patients. In vitro, the pro-tumorigenic effects of HSC-CM on UM cells were abrogated by a pharmacological inhibitor (BGJ398) of FGFR1/2/3. The expression analysis revealed that the majority of paracrine FGFs are expressed by HSCs, but not by UM cells, including FGF9. Furthermore, the immunofluorescence analysis indicated HSCs as a cellular source of FGF9 in hepatic metastases of UM patients. Treatment with recombinant FGF9 significantly enhanced the proliferation of UM cells, and this effect was efficiently blocked by the FGFR1/2/3 inhibitor BGJ398. Our study indicates that FGF9 released by HSCs promotes the tumorigenicity of UM cells, and thus suggests FGF9 as a promising therapeutic target in hepatic metastasis.


Assuntos
Neoplasias Hepáticas , Neoplasias Uveais , Proliferação de Células , Meios de Cultivo Condicionados/metabolismo , Meios de Cultivo Condicionados/farmacologia , Fatores de Crescimento de Fibroblastos/metabolismo , Células Estreladas do Fígado/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Melanoma , Compostos de Fenilureia , Pirimidinas , Neoplasias Uveais/metabolismo
10.
Liver Int ; 41(6): 1201-1215, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33655624

RESUMO

Fibrotic remodelling is a highly conserved protective response to tissue injury and it is essential for the maintenance of structural and functional tissue integrity. Also hepatic fibrosis can be considered as a wound-healing response to liver injury, reflecting a balance between liver repair and scar formation. In contrast, pathological fibrosis corresponds to impaired wound healing. Usually, the liver regenerates after acute injury. However, if the damaging mechanisms persist, the liver reacts with progressive and uncontrolled accumulation of extracellular matrix proteins. Eventually, excessive fibrosis can lead to cirrhosis and hepatic failure. Furthermore, cirrhosis is the major risk factor for the development of hepatocellular cancer (HCC). Therefore, hepatic fibrosis is the most critical pathological factor that determines the morbidity and mortality of patients with chronic liver disease. Still, no effective anti-fibrogenic therapies exist, despite the very high medical need. The regulation of fibroblast growth factor (FGF) signalling is a prerequisite for adequate wound healing, repair and homeostasis in various tissues and organs. The FGF family comprises 22 proteins that can be classified into paracrine, intracrine and endocrine factors. Most FGFs signal through transmembrane tyrosine kinase FGF receptors (FGFRs). Although FGFRs are promising targets for the treatment of HCC, the expression and function of FGFR-ligands in hepatic fibrosis is still poorly understood. This review summarizes the latest advances in our understanding of FGF signalling in hepatic fibrosis. Furthermore, the potential of FGFs as targets for the treatment of hepatic fibrosis and remaining challenges for the field are discussed.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Fatores de Crescimento de Fibroblastos , Fibrose , Humanos , Cirrose Hepática , Receptores de Fatores de Crescimento de Fibroblastos
11.
Int J Mol Sci ; 22(1)2020 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-33375117

RESUMO

Despite recent advances in therapy, liver metastasis from melanoma is still associated with poor prognosis. Although targeting the mTOR signaling pathway exerts potent anti-tumor activity, little is known about specific mTORC2 inhibition regarding liver metastasis. Using the novel mTORC2 specific inhibitor JR-AB2-011, we show significantly reduced migration and invasion capacity by impaired activation of MMP2 in melanoma cells. In addition, blockade of mTORC2 induces cell death by non-apoptotic pathways and reduces tumor cell proliferation rate dose-dependently. Furthermore, a significant reduction of liver metastasis was detected in a syngeneic murine metastasis model upon therapy with JR-AB2-011 as determined by in vivo imaging and necropsy. Hence, our study for the first time highlights the impact of the pharmacological blockade of mTORC2 as a potent novel anti-cancer approach for liver metastasis from melanoma.


Assuntos
Movimento Celular/efeitos dos fármacos , Neoplasias Hepáticas/prevenção & controle , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Melanoma/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Animais , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ativação Enzimática/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/secundário , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Melanoma/metabolismo , Melanoma/patologia , Camundongos Endogâmicos C57BL , Transdução de Sinais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
12.
Int J Mol Sci ; 21(6)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188134

RESUMO

Molecular and cellular research modalities for the study of liver pathologies have been tremendously improved over the recent decades. Advanced technologies offer novel opportunities to establish cell isolation techniques with excellent purity, paving the path for 2D and 3D microscopy and high-throughput assays (e.g., bulk or single-cell RNA sequencing). The use of stem cell and organoid research will help to decipher the pathophysiology of liver diseases and the interaction between various parenchymal and non-parenchymal liver cells. Furthermore, sophisticated animal models of liver disease allow for the in vivo assessment of fibrogenesis, portal hypertension and hepatocellular carcinoma (HCC) and for the preclinical testing of therapeutic strategies. The purpose of this review is to portray in detail novel in vitro and in vivo methods for the study of liver cell biology that had been presented at the workshop of the 8th meeting of the European Club for Liver Cell Biology (ECLCB-8) in October of 2018 in Bonn, Germany.


Assuntos
Biologia Celular , Técnicas Citológicas/métodos , Fígado/patologia , Animais , Carcinoma Hepatocelular/patologia , Comunicação Celular , Técnicas de Cultura de Células , Modelos Animais de Doenças , Fígado Gorduroso/patologia , Expressão Gênica , Alemanha , Hepatócitos/patologia , Humanos , Hipertensão Portal/patologia , Neoplasias Hepáticas/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Organoides/patologia
13.
Gut ; 68(6): 1099-1107, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30068662

RESUMO

OBJECTIVE: Homozygous alpha1-antitrypsin (AAT) deficiency increases the risk for developing cirrhosis, whereas the relevance of heterozygous carriage remains unclear. Hence, we evaluated the impact of the two most relevant AAT variants ('Pi*Z' and 'Pi*S'), present in up to 10% of Caucasians, on subjects with non-alcoholic fatty liver disease (NAFLD) or alcohol misuse. DESIGN: We analysed multicentric case-control cohorts consisting of 1184 people with biopsy-proven NAFLD and of 2462 people with chronic alcohol misuse, both cohorts comprising cases with cirrhosis and controls without cirrhosis. Genotyping for the Pi*Z and Pi*S variants was performed. RESULTS: The Pi*Z variant presented in 13.8% of patients with cirrhotic NAFLD but only in 2.4% of counterparts without liver fibrosis (p<0.0001). Accordingly, the Pi*Z variant increased the risk of NAFLD subjects to develop cirrhosis (adjusted OR=7.3 (95% CI 2.2 to 24.8)). Likewise, the Pi*Z variant presented in 6.2% of alcohol misusers with cirrhosis but only in 2.2% of alcohol misusers without significant liver injury (p<0.0001). Correspondingly, alcohol misusers carrying the Pi*Z variant were prone to develop cirrhosis (adjusted OR=5.8 (95% CI 2.9 to 11.7)). In contrast, the Pi*S variant was not associated with NAFLD-related cirrhosis and only borderline with alcohol-related cirrhosis (adjusted OR=1.47 (95% CI 0.99 to 2.19)). CONCLUSION: The Pi*Z variant is the hitherto strongest single nucleotide polymorphism-based risk factor for cirrhosis in NAFLD and alcohol misuse, whereas the Pi*S variant confers only a weak risk in alcohol misusers. As 2%-4% of Caucasians are Pi*Z carriers, this finding should be considered in genetic counselling of affected individuals.


Assuntos
Predisposição Genética para Doença/epidemiologia , Heterozigoto , Cirrose Hepática Alcoólica/genética , alfa 1-Antitripsina/genética , Distribuição por Idade , Áustria , Biópsia por Agulha , Estudos de Casos e Controles , Intervalos de Confiança , Feminino , Triagem de Portadores Genéticos , Variação Genética , Alemanha , Humanos , Imuno-Histoquímica , Incidência , Cirrose Hepática Alcoólica/epidemiologia , Cirrose Hepática Alcoólica/patologia , Masculino , Hepatopatia Gordurosa não Alcoólica/epidemiologia , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/patologia , Razão de Chances , Polimorfismo de Nucleotídeo Único , Prognóstico , Medição de Risco , Distribuição por Sexo
14.
Am J Pathol ; 188(1): 72-83, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29107073

RESUMO

Tumor immune microenvironment and tumor metabolism are major determinants of chemoradiotherapy response. The interdependency and prognostic significance of specific immune and metabolic phenotypes in head and neck squamous cell carcinoma (HNSCC) were assessed and changes in reactive oxygen species were evaluated as a mechanism of treatment response in tumor spheroid/immunocyte co-cultures. Pretreatment tumor biopsies were immunohistochemically characterized in 73 HNSCC patients treated by definitive chemoradiotherapy and correlated with survival. The prognostic significance of CD8A, GLUT1, and COX5B gene expression was analyzed within The Cancer Genome Atlas database. HNSCC spheroids were co-cultured in vitro with peripheral blood mononuclear cells (PBMCs) in the presence of the glycolysis inhibitor 2-deoxyglucose and radiation treatment followed by PBMC chemotaxis determination via fluorescence microscopy. In the chemoradiotherapy-treated HNSCC cohort, mitochondrial-rich (COX5B) metabolism correlated with increased and glucose-dependent (GLUT1) metabolism with decreased intratumoral CD8/CD4 ratios. High CD8/CD4, together with mitochondrial-rich or glucose-independent metabolism, was associated with improved short-term survival. The Cancer Genome Atlas analysis confirmed that patients with a favorable immune and metabolic gene signature (high CD8A, high COX5B, low GLUT1) had improved short- and long-term survival. In vitro, 2-deoxyglucose and radiation synergistically up-regulated reactive oxygen species-dependent PBMC chemotaxis to HNSCC spheroids. These results suggest that glucose-independent tumor metabolism is associated with CD8-dominant antitumor immune infiltrate, and together, these contribute to improved chemoradiotherapy response in HNSCC.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma de Células Escamosas/terapia , Quimiorradioterapia , Neoplasias de Cabeça e Pescoço/terapia , Idoso , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Antígenos CD8/genética , Antígenos CD8/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/mortalidade , Linhagem Celular Tumoral , Grupo dos Citocromos c/genética , Grupo dos Citocromos c/metabolismo , Bases de Dados Genéticas , Complexo IV da Cadeia de Transporte de Elétrons , Feminino , Transportador de Glucose Tipo 1/genética , Transportador de Glucose Tipo 1/metabolismo , Neoplasias de Cabeça e Pescoço/metabolismo , Neoplasias de Cabeça e Pescoço/mortalidade , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Espécies Reativas de Oxigênio/metabolismo , Taxa de Sobrevida
15.
Hepatology ; 67(4): 1270-1283, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28940700

RESUMO

Macrophages are key regulators of liver fibrosis progression and regression in nonalcoholic steatohepatitis (NASH). Liver macrophages comprise resident phagocytes, Kupffer cells, and monocyte-derived cells, which are recruited through the chemokine receptor C-C motif chemokine receptor 2 (CCR2). We aimed at elucidating the therapeutic effects of inhibiting monocyte infiltration in NASH models by using cenicriviroc (CVC), an oral dual chemokine receptor CCR2/CCR5 antagonist that is under clinical evaluation. Human liver tissues from NASH patients were analyzed for CCR2+ macrophages, and administration of CVC was tested in mouse models of steatohepatitis, liver fibrosis progression, and fibrosis regression. In human livers from 17 patients and 4 controls, CCR2+ macrophages increased parallel to NASH severity and fibrosis stage, with a concomitant inflammatory polarization of these cluster of differentiation 68+ , portal monocyte-derived macrophages (MoMF). Similar to human disease, we observed a massive increase of hepatic MoMF in experimental models of steatohepatitis and liver fibrosis. Therapeutic treatment with CVC significantly reduced the recruitment of hepatic Ly-6C+ MoMF in all models. In experimental steatohepatitis with obesity, therapeutic CVC application significantly improved insulin resistance and hepatic triglyceride levels. In fibrotic steatohepatitis, CVC treatment ameliorated histological NASH activity and hepatic fibrosis. CVC inhibited the infiltration of Ly-6C+ monocytes, without direct effects on macrophage polarization, hepatocyte fatty acid metabolism, or stellate cell activation. Importantly, CVC did not delay fibrosis resolution after injury cessation. RNA sequencing analysis revealed that MoMF, but not Kupffer cells, specifically up-regulate multiple growth factors and cytokines associated with fibrosis progression, while Kupffer cells activated pathways related to inflammation initiation and lipid metabolism. CONCLUSION: Pharmacological inhibition of CCR2+ monocyte recruitment efficiently ameliorates insulin resistance, hepatic inflammation, and fibrosis, corroborating the therapeutic potential of CVC in patients with NASH. (Hepatology 2018;67:1270-1283).


Assuntos
Antagonistas dos Receptores CCR5/farmacologia , Imidazóis/farmacologia , Cirrose Hepática/tratamento farmacológico , Monócitos/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Adulto , Idoso , Animais , Quimiotaxia de Leucócito/efeitos dos fármacos , Citocinas/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Feminino , Humanos , Imuno-Histoquímica , Resistência à Insulina , Fígado/patologia , Cirrose Hepática/patologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Monócitos/patologia , Hepatopatia Gordurosa não Alcoólica/patologia , Sulfóxidos
16.
Toxicol Mech Methods ; 29(3): 219-223, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30380359

RESUMO

CYP2E1 is a mammalian cytochrome P450 enzyme, which oxidizes a structurally diverse class of endogenous and exogenous (xenobiotic) compounds. Best studied is the role of CYP2E1 in phase I metabolism of xenobiotics including alcohol. CYP2E1 metabolizes ethanol and is active in generating reactive oxygen species (ROS) and subsequent oxidative stress in the hepatic tissues. Several studies have shown and discussed the importance of CYP2E1 in the hepatotoxic actions of alcohol. However, the vast majority assessed the CYP2E1 activity only in isolated microsomes. Here, we aimed to develop and optimize a fast and easy method to assess alcohol-induced CYP2E1 activity in hepatocytes in vitro applying oxidation of para-nitrophenol to para-nitrocatechol as specific substrate probe. Using hepatoma cells with and without stable CYP2E1 expression and primary human hepatocytes, we established specific methodology to assess CYP2E1 catalytic activity and its induction by ethanol in a small number of cells and in a very short time.


Assuntos
Citocromo P-450 CYP2E1/metabolismo , Hepatócitos/efeitos dos fármacos , Nitrofenóis/toxicidade , Bioensaio , Relação Dose-Resposta a Droga , Etanol/farmacologia , Células Hep G2 , Hepatócitos/enzimologia , Humanos , Nitrofenóis/metabolismo , Oxirredução , Cultura Primária de Células
17.
Gut ; 67(7): 1328-1341, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29275358

RESUMO

OBJECTIVE: Sorafenib is the only effective therapy for advanced hepatocellular carcinoma (HCC). Combinatory approaches targeting mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK)- and phosphatidylinositol-4,5-bisphosphate-3-kinase (PI3K)/protein-kinase B(AKT) signalling yield major therapeutic improvements. RAS proteins regulate both RAF/MAPK and PI3K/AKT signalling. However, the most important RAS isoform in carcinogenesis, Kirsten rat sarcoma (KRAS), remains unexplored in HCC. DESIGN: Human HCC tissues and cell lines were used for expression and functional analysis. Sorafenib-resistant HCC cells were newly generated. RNA interference and the novel small molecule deltarasin were used for KRAS inhibition both in vitro and in a murine syngeneic orthotopic HCC model. RESULTS: Expression of wild type KRAS messenger RNA and protein was increased in HCC and correlated with extracellular-signal regulated kinase (ERK) activation, proliferation rate, advanced tumour size and poor patient survival. Bioinformatic analysis and reporter assays revealed that KRAS is a direct target of microRNA-622. This microRNA was downregulated in HCC, and functional analysis demonstrated that KRAS-suppression is the major mediator of its inhibitory effect on HCC proliferation. KRAS inhibition markedly suppressed RAF/ERK and PI3K/AKT signalling and proliferation and enhanced apoptosis of HCC cells in vitro and in vivo. Combinatory KRAS inhibition and sorafenib treatment revealed synergistic antitumorigenic effects in HCC. Sorafenib-resistant HCC cells showed elevated KRAS expression, and KRAS inhibition resensitised sorafenib-resistant cells to suppression of proliferation and induction of apoptosis. CONCLUSIONS: KRAS is dysregulated in HCC by loss of tumour-suppressive microRNA-622, contributing to tumour progression, sorafenib sensitivity and resistance. KRAS inhibition alone or in combination with sorafenib appears as novel promising therapeutic strategy for HCC.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , MicroRNAs/metabolismo , Niacinamida/análogos & derivados , Compostos de Fenilureia/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/fisiologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/patologia , Técnicas de Cultura de Células , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/patologia , Niacinamida/uso terapêutico , Sorafenibe
18.
Gut ; 67(4): 746-756, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28053052

RESUMO

OBJECTIVE: Preoperative chemotherapy with irinotecan is associated with the development of steatohepatitis, which increases the risk of perioperative morbidity and mortality for liver surgery. The molecular mechanisms of this chemotherapeutic complication are widely unknown. DESIGN: Mechanisms of irinotecan-induced steatohepatitis were studied in primary human hepatocytes in vitro, in mice treated with irinotecan and in liver specimens from irinotecan-treated compared with control patients. RESULTS: Irinotecan dose-dependently induced lipid accumulation and pro-inflammatory gene expression in hepatocytes. This was accompanied by an impairment of mitochondrial function with reduced expression of carnitine palmitoyltransferase I and an induction of acyl-coenzyme A oxidase-1 (ACOX1), oxidative stress and extracellular signal-regulated kinase (ERK) activation. ERK inhibition prevented irinotecan-induced pro-inflammatory gene expression but had only a slight effect on lipid accumulation. However, irinotecan also induced an impairment of the autophagic flux mediated by alkalisation of lysosomal pH. Re-acidification of lysosomal pH abolished irinotecan-induced autophagy impairment and lipid accumulation. Also in mice, irinotecan treatment induced hepatic ACOX1 expression, ERK phosphorylation and inflammation, as well as impairment of autophagy and significant steatosis. Furthermore, irinotecan-treated patients revealed higher hepatic ERK activity, expression of pro-inflammatory genes and markers indicative for a shift to peroxisomal fatty acid oxidation and an impaired autophagic flux. Pretreatment with the multityrosine kinase inhibitor sorafenib did not affect autophagy impairment and steatosis but significantly reduced ERK phosphorylation and inflammatory response in irinotecan-treated hepatocytes and murine livers. CONCLUSIONS: Irinotecan induces hepatic steatosis via autophagy impairment and inflammation via ERK activation. Sorafenib appears as a novel therapeutic option for the prevention and treatment of irinotecan-induced inflammation.


Assuntos
Antineoplásicos Fitogênicos/efeitos adversos , Autofagia/efeitos dos fármacos , Camptotecina/análogos & derivados , Fígado Gorduroso/induzido quimicamente , Hepatócitos/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Cuidados Pré-Operatórios/efeitos adversos , Animais , Antineoplásicos Fitogênicos/administração & dosagem , Camptotecina/administração & dosagem , Camptotecina/efeitos adversos , Modelos Animais de Doenças , Humanos , Técnicas In Vitro , Irinotecano , Neoplasias Hepáticas/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL
19.
Gut ; 67(10): 1855-1863, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-28754779

RESUMO

OBJECTIVE: Alcohol-related pancreatitis is associated with a disproportionately large number of hospitalisations among GI disorders. Despite its clinical importance, genetic susceptibility to alcoholic chronic pancreatitis (CP) is poorly characterised. To identify risk genes for alcoholic CP and to evaluate their relevance in non-alcoholic CP, we performed a genome-wide association study and functional characterisation of a new pancreatitis locus. DESIGN: 1959 European alcoholic CP patients and population-based controls from the KORA, LIFE and INCIPE studies (n=4708) as well as chronic alcoholics from the GESGA consortium (n=1332) were screened with Illumina technology. For replication, three European cohorts comprising 1650 patients with non-alcoholic CP and 6695 controls originating from the same countries were used. RESULTS: We replicated previously reported risk loci CLDN2-MORC4, CTRC, PRSS1-PRSS2 and SPINK1 in alcoholic CP patients. We identified CTRB1-CTRB2 (chymotrypsin B1 and B2) as a new risk locus with lead single-nucleotide polymorphism (SNP) rs8055167 (OR 1.35, 95% CI 1.23 to 1.6). We found that a 16.6 kb inversion in the CTRB1-CTRB2 locus was in linkage disequilibrium with the CP-associated SNPs and was best tagged by rs8048956. The association was replicated in three independent European non-alcoholic CP cohorts of 1650 patients and 6695 controls (OR 1.62, 95% CI 1.42 to 1.86). The inversion changes the expression ratio of the CTRB1 and CTRB2 isoforms and thereby affects protective trypsinogen degradation and ultimately pancreatitis risk. CONCLUSION: An inversion in the CTRB1-CTRB2 locus modifies risk for alcoholic and non-alcoholic CP indicating that common pathomechanisms are involved in these inflammatory disorders.


Assuntos
Quimotripsina/genética , Pancreatite Alcoólica , Adulto , Idoso , Europa (Continente)/epidemiologia , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Pessoa de Meia-Idade , Pancreatite Alcoólica/epidemiologia , Pancreatite Alcoólica/genética , Polimorfismo de Nucleotídeo Único
20.
Lab Invest ; 98(12): 1614-1626, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30089858

RESUMO

Non-alcoholic fatty liver disease (NAFLD) is considered to be the hepatic manifestation of the metabolic syndrome. Iso-alpha acids (IAAs), hop-derived bitter compounds in beer, have been shown to beneficially affect different components of the metabolic syndrome such as insulin resistance and dyslipidemia. However, IAAs have not yet been studied in the context of chronic liver disease. Here we analyzed the effect of IAA on the pathogenesis of NAFLD. Once, we applied IAA to mice in combination with a NAFLD-inducing Western-type diet (WTD), and observed that IAA significantly inhibited WTD-induced body weight gain, glucose intolerance, and hepatic steatosis. Fitting to this, IAA dose-dependently inhibited cellular lipid accumulation in primary human hepatocytes (PHH) in vitro. Reduced expression of PPAR-gamma and key enzymes of lipid synthesis as well as increased expression of PPAR-alpha, indicative for increased lipid combustion, were identified as underlying mechanisms of reduced hepatocellular steatosis in vitro and in vivo. Analysis of hepatic HMOX1 expression indicated reduced oxidative stress in IAA-treated mice, which was paralleled by reduced activation of the JNK pathway and pro-inflammatory gene expression and immune cell infiltration. Furthermore, IAA reduced hepatic stellate cell (HSC) activation and pro-fibrogenic gene expression. Similarly, IAA also dose-dependently reduced oxidative stress and JNK activation in steatotic PHH, inhibited HSC activation, and reduced proliferation and pro-fibrogenic gene expression in already activated HSC in vitro. In conclusion, IAAs inhibit different pathophysiological steps of disease progression in NAFLD. Together with previous studies, which demonstrated the safety of even long-term application of IAA in humans, our data suggest IAA as promising therapeutic agent for the prevention and treatment of (non)alcoholic (fatty) liver disease.


Assuntos
Cicloexenos/uso terapêutico , Hepatócitos/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Terpenos/uso terapêutico , Animais , Cicloexenos/farmacologia , Dieta Ocidental/efeitos adversos , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Hepatite/prevenção & controle , Humanos , Humulus , Cirrose Hepática/prevenção & controle , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/prevenção & controle , Fitoterapia , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Cultura Primária de Células , Terpenos/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA