Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 106(10): 3806-11, 2009 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-19234121

RESUMO

Bone marrow-derived mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs) have been shown to engraft into the stroma of several tumor types, where they contribute to tumor progression and metastasis. However, the chemotactic signals mediating MSC migration to tumors remain poorly understood. Previous studies have shown that LL-37 (leucine, leucine-37), the C-terminal peptide of human cationic antimicrobial protein 18, stimulates the migration of various cell types and is overexpressed in ovarian, breast, and lung cancers. Although there is evidence to support a pro-tumorigenic role for LL-37, the function of the peptide in tumors remains unclear. Here, we demonstrate that neutralization of LL-37 in vivo significantly reduces the engraftment of MSCs into ovarian tumor xenografts, resulting in inhibition of tumor growth as well as disruption of the fibrovascular network. Migration and invasion experiments conducted in vitro indicated that the LL-37-mediated migration of MSCs to tumors likely occurs through formyl peptide receptor like-1. To assess the response of MSCs to the LL-37-rich tumor microenvironment, conditioned medium from LL-37-treated MSCs was assessed and found to contain increased levels of several cytokines and pro-angiogenic factors compared with controls, including IL-1 receptor antagonist, IL-6, IL-10, CCL5, VEGF, and matrix metalloproteinase-2. Similarly, Matrigel mixed with LL-37, MSCs, or the combination of the two resulted in a significant number of vascular channels in nude mice. These data indicate that LL-37 facilitates ovarian tumor progression through recruitment of progenitor cell populations to serve as pro-angiogenic factor-expressing tumor stromal cells.


Assuntos
Peptídeos Catiônicos Antimicrobianos/farmacologia , Movimento Celular/efeitos dos fármacos , Mediadores da Inflamação/farmacologia , Mesoderma/citologia , Células-Tronco Multipotentes/citologia , Neoplasias Ovarianas/patologia , Células Estromais/citologia , Indutores da Angiogênese/metabolismo , Animais , Catelicidinas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fatores Quimiotáticos/farmacologia , Progressão da Doença , Feminino , Humanos , Mesoderma/efeitos dos fármacos , Camundongos , Modelos Biológicos , Células-Tronco Multipotentes/efeitos dos fármacos , Testes de Neutralização , Neoplasias Ovarianas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Células Estromais/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
2.
PLoS One ; 7(9): e45590, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23029122

RESUMO

BACKGROUND: Currently, there are many promising clinical trials using mesenchymal stem cells (MSCs) in cell-based therapies of numerous diseases. Increasingly, however, there is a concern over the use of MSCs because they home to tumors and can support tumor growth and metastasis. For instance, we established that MSCs in the ovarian tumor microenvironment promoted tumor growth and favored angiogenesis. In parallel studies, we also developed a new approach to induce the conventional mixed pool of MSCs into two uniform but distinct phenotypes we termed MSC1 and MSC2. METHODOLOGY/PRINCIPAL FINDINGS: Here we tested the in vitro and in vivo stability of MSC1 and MSC2 phenotypes as well as their effects on tumor growth and spread. In vitro co-culture of MSC1 with various cancer cells diminished growth in colony forming units and tumor spheroid assays, while conventional MSCs or MSC2 co-culture had the opposite effect in these assays. Co-culture of MSC1 and cancer cells also distinctly affected their migration and invasion potential when compared to MSCs or MSC2 treated samples. The expression of bioactive molecules also differed dramatically among these samples. MSC1-based treatment of established tumors in an immune competent model attenuated tumor growth and metastasis in contrast to MSCs- and MSC2-treated animals in which tumor growth and spread was increased. Also, in contrast to these groups, MSC1-therapy led to less ascites accumulation, increased CD45+leukocytes, decreased collagen deposition, and mast cell degranulation. CONCLUSION/SIGNIFICANCE: These observations indicate that the MSC1 and MSC2 phenotypes may be convenient tools for the discovery of critical components of the tumor stroma. The continued investigation of these cells may help ensure that cell based-therapy is used safely and effectively in human disease.


Assuntos
Divisão Celular , Transplante de Células-Tronco Mesenquimais , Metástase Neoplásica , Neoplasias/cirurgia , Linhagem Celular Tumoral , Técnicas de Cocultura , Humanos , Neoplasias/patologia
3.
PLoS One ; 7(6): e39592, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22745793

RESUMO

BACKGROUND: The use of bone marrow-derived human multipotent stromal cells (hMSC) in cell-based therapies has dramatically increased in recent years, as researchers have exploited the ability of these cells to migrate to sites of tissue injury, inflammation, and tumors. Our group established that hMSC respond to "danger" signals--by-products of damaged, infected or inflamed tissues--via activation of Toll-like receptors (TLRs). However, little is known regarding downstream signaling mediated by TLRs in hMSC. METHODOLOGY/PRINCIPAL FINDINGS: We demonstrate that TLR3 stimulation activates a Janus kinase (JAK) 2/signal transducer and activator of transcription (STAT) 1 pathway, and increases expression of suppressor of cytokine signaling (SOCS) 1 and SOCS3 in hMSC. Our studies suggest that each of these SOCS plays a distinct role in negatively regulating TLR3 and JAK/STAT signaling. TLR3-mediated interferon regulatory factor 1 (IRF1) expression was inhibited by SOCS3 overexpression in hMSC while SOCS1 overexpression reduced STAT1 activation. Furthermore, our study is the first to demonstrate that when TLR3 is activated in hMSC, expression of CXCR4 and CXCR7 is downregulated. SOCS3 overexpression inhibited internalization of both CXCR4 and CXCR7 following TLR3 stimulation. In contrast, SOCS1 overexpression only inhibited CXCR7 internalization. CONCLUSION/SIGNIFICANCE: These results demonstrate that SOCS1 and SOCS3 each play a functionally distinct role in modulating TLR3, JAK/STAT, and CXCR4/CXCR7 signaling in hMSC and shed further light on the way hMSC respond to danger signals.


Assuntos
Células da Medula Óssea/citologia , Receptores CXCR4/metabolismo , Receptores CXCR/metabolismo , Células Estromais/citologia , Células Estromais/metabolismo , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Receptor 3 Toll-Like/metabolismo , Células Cultivadas , Humanos , Receptores CXCR/genética , Receptores CXCR4/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/metabolismo , Proteína 1 Supressora da Sinalização de Citocina , Proteína 3 Supressora da Sinalização de Citocinas , Proteínas Supressoras da Sinalização de Citocina/genética , Receptor 3 Toll-Like/genética
4.
PLoS One ; 5(4): e10088, 2010 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-20436665

RESUMO

BACKGROUND: Our laboratory and others reported that the stimulation of specific Toll-like receptors (TLRs) affects the immune modulating responses of human multipotent mesenchymal stromal cells (hMSCs). Toll-like receptors recognize "danger" signals, and their activation leads to profound cellular and systemic responses that mobilize innate and adaptive host immune cells. The danger signals that trigger TLRs are released following most tissue pathologies. Since danger signals recruit immune cells to sites of injury, we reasoned that hMSCs might be recruited in a similar way. Indeed, we found that hMSCs express several TLRs (e.g., TLR3 and TLR4), and that their migration, invasion, and secretion of immune modulating factors is drastically affected by specific TLR-agonist engagement. In particular, we noted diverse consequences on the hMSCs following stimulation of TLR3 when compared to TLR4 by our low-level, short-term TLR-priming protocol. PRINCIPAL FINDINGS: Here we extend our studies on the effect on immune modulation by specific TLR-priming of hMSCs, and based on our findings, propose a new paradigm for hMSCs that takes its cue from the monocyte literature. Specifically, that hMSCs can be polarized by downstream TLR signaling into two homogenously acting phenotypes we classify here as MSC1 and MSC2. This concept came from our observations that TLR4-primed hMSCs, or MSC1, mostly elaborate pro-inflammatory mediators, while TLR3-primed hMSCs, or MSC2, express mostly immunosuppressive ones. Additionally, allogeneic co-cultures of TLR-primed MSCs with peripheral blood mononuclear cells (PBMCs) predictably lead to suppressed T-lymphocyte activation following MSC2 co-culture, and permissive T-lymphocyte activation in co-culture with MSC1. SIGNIFICANCE: Our study provides an explanation to some of the conflicting reports on the net effect of TLR stimulation and its downstream consequences on the immune modulating properties of stem cells. We further suggest that MSC polarization provides a convenient way to render these heterogeneous preparations of cells more uniform while introducing a new facet to study, as well as provides an important aspect to consider for the improvement of current stem cell-based therapies.


Assuntos
Imunidade , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/imunologia , Movimento Celular/imunologia , Técnicas de Cocultura , Humanos , Sistema Imunitário/citologia , Inflamação/imunologia , Monócitos , Fenótipo , Receptor 3 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Receptores Toll-Like/agonistas , Receptores Toll-Like/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA