Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Microb Ecol ; 85(3): 1077-1086, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36725750

RESUMO

Lawns are a ubiquitous, human-made environment created for human enjoyment, leisure, and aesthetics. While net positive for carbon storage, lawns can have negative environmental impacts. Lawns require frequent mowing, which produces high levels of CO2 pollution and kills off native plants. Lawn fertilizing creates its own environmental pollution. One (presumed) ecologically-friendly alternative to lawns is restoration, or rewilding, of these spaces as meadows, which need less maintenance (e.g., infrequent mowing). However, little work has compared lawns against small-scale meadows for biodiversity outside of pollinator studies. Here, we tested the hypotheses that compared to lawns, meadows have (1) unique and higher levels of soil microbial biodiversity and (2) different soil physical and chemical characteristics. We conducted bacterial (16S) and fungal (ITS2) metabarcoding, and found that both bacteria and fungi are indeed more diverse in meadows (significantly so for bacteria). Species composition between meadows and lawns was significantly different for both types of microbes, including higher levels of mycorrhizal fungi in meadows. We also found that chemistry (e.g., potassium and metrics relating to pH) differed significantly between lawns and meadows and was more optimal for plant growth in the meadows. We believe these differences are caused by the different organisms dwelling in these habitats. In summary, these findings point to notable-positive-shifts in microbial and chemical compositions within meadows, further indicating that meadow restoration benefits biodiversity and soil health.


Assuntos
Pradaria , Solo , Humanos , Solo/química , Microbiologia do Solo , Biodiversidade , Ecossistema , Bactérias/genética
2.
J Plankton Res ; 42(5): 530-538, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32939155

RESUMO

Although consumers may use selective feeding to cope with suboptimal resource quality, little work has examined the mechanisms that underlie selective feeding, the efficiency of this behavior or its influence on consumer growth rate. Furthermore, a consumer's exposure to suboptimal resources may also influence the consumer's behavior and life history, including growth rate. Here, we studied how the availability of P-rich and P-poor phytoplankton influences the growth and behavior of copepod nauplii. We observed that copepod nauplii preferentially feed on P-rich prey. We also found that even relatively short exposure to P-rich phytoplankton yielded higher nauplii growth rates, whereas the presence of P-poor phytoplankton in a mixture impaired growth. Overall, we observed that swimming speed decreased with increasing phytoplankton P-content, which is a behavioral adjustment that may improve utilization of heterogeneously distributed high-quality food in the field. Based on our results, we propose that the optimal prey C: P ratio for copepod nauplii is very narrow, and that deviations from this optimum have severe negative consequences for growth.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA