Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Neurosci Lett ; 690: 219-224, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-30366010

RESUMO

P2X receptors (P2XRs) are a family of ATP-gated ionic channels that are expressed in numerous excitable and non-excitable cells. Despite the great advance on the structure and function of these receptors in the last decades, there is still lack of specific and potent antagonists for P2XRs subtypes, especially for the P2X4R. Here, we studied in detail the effect of the P2X4R antagonist 5-(3-bromophenyl)-1,3-dihydro-2H-benzofuro[3,2-e]-1,4-diazepin-2-one (5-BDBD) on ATP-induced currents mediated by the rat P2X4R and compared its specificity among another rat P2XRs. We found that 5-BDBD is a potent P2X4R antagonist, with an IC50 of 0.75 µM when applied for 2 min prior and during ATP stimulation. Moreover, at 10 µM concentration, 5-BDBD did not affect the ATP-induced P2X2aR, P2X2bR, and P2X7R current amplitude or the pattern of receptor desensitization. However, at 10 µM concentration but not 0.75 µM 5-BDBD inhibited the P2X1R and P2X3R-gated currents by 13 and 35% respectively. Moreover, we studied the effects of 5-BDBD in long-term potentiation experiments performed in rat hippocampal slices, finding this antagonist can partially decrease LTP, a response that is believed to be mediated in part by endogenous P2X4Rs. These results indicate that 5-BDBD could be used to study the endogenous effects of the P2X4R in the central nervous system and this antagonist can discriminate between P2X4R and other P2XRs, when they are co-expressed in the same tissue.


Assuntos
Benzodiazepinonas/farmacologia , Receptores Purinérgicos P2X/fisiologia , Trifosfato de Adenosina/antagonistas & inibidores , Trifosfato de Adenosina/farmacologia , Animais , Células Cultivadas , Relação Dose-Resposta a Droga , Hipocampo/fisiologia , Humanos , Potenciação de Longa Duração/efeitos dos fármacos , Potenciação de Longa Duração/fisiologia , Masculino , Antagonistas do Receptor Purinérgico P2X/farmacologia , Ratos , Receptores Purinérgicos P2X/genética
2.
Front Pharmacol ; 10: 612, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31249523

RESUMO

Gastric cancer (GC) is the one of the most prevalent cancers and one of the leading causes of cancer-induced deaths. Previously, we found that the expression of purinergic P2Y2 receptor (P2Y2R) is increased in GC samples as compared to adjacent healthy mucosa taken from GC-diagnosed patients. In this work, we studied in detail purinergic signaling in the gastric adenocarcinoma-derived cell lines: AGS, MKN-45, and MKN-74, and compared them to a nontumoral epithelial cell line: GES-1. In GC-derived cells, we detected the expression of several purinergic receptors, and found important differences as compared to GES-1 cells. Functional studies revealed a strong contribution of P2Y2Rs in intracellular calcium increases, elicited by adenosine-triphosphate (ATP), uridine-triphosphate (UTP), and the P2Y2R agonist MRS2768. Responses were preserved in the absence of extracellular calcium and inhibited by P2Y2R antagonists. In GES-1 cells, ATP and UTP induced similar responses and the combination of P2X and P2Y receptor antagonists was able to block them. Proliferation studies showed that ATP regulates AGS and MKN-74 cells in a biphasic manner, increasing cell proliferation at 10-100 µM, but inhibiting at 300 µM ATP. On the other hand, 1-300 µM UTP, a P2Y2R agonist, increased concentration-dependent cell proliferation. The effects of UTP and ATP were prevented by both wide-range and specific purinergic antagonists. In contrast, in GES-1 cells ATP only decreased cell proliferation in a concentration-dependent manner, and UTP had no effect. Notably, the isolated application of purinergic antagonists was sufficient to change the basal proliferation of AGS cells, indicating that nucleotides released by the cells can act as paracrine/autocrine signals. Finally, in tumor-derived biopsies, we found an increase of P2Y2R and a decrease in P2X4R expression; however, we found high variability between seven different biopsies and their respective adjacent healthy gastric mucosa. Even so, we found a correlation between the expression levels of P2Y2R and P2X4R and survival rates of GC patients. Taken together, these results demonstrate the involvement of different purinergic receptors and signaling in GC, and the pattern of expression changes in tumoral cells, and this change likely directs ATP and nucleotide signaling from antiproliferative effects in healthy tissues to proliferative effects in cancer.

3.
Pain ; 158(11): 2155-2168, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28809765

RESUMO

The purinergic P2X2 receptor (P2X2R) is an adenosine triphosphate-gated ion channel widely expressed in the nervous system. Here, we identified a putative cyclin-dependent kinase 5 (Cdk5) phosphorylation site in the full-size variant P2X2aR (TPKH), which is absent in the splice variant P2X2bR. We therefore investigated the effects of Cdk5 and its neuronal activator, p35, on P2X2aR function. We found an interaction between P2X2aR and Cdk5/p35 by co-immunofluorescence and co-immunoprecipitation in HEK293 cells. We also found that threonine phosphorylation was significantly increased in HEK293 cells co-expressing P2X2aR and p35 as compared to cells expressing only P2X2aR. Moreover, P2X2aR-derived peptides encompassing the Cdk5 consensus motif were phosphorylated by Cdk5/p35. Whole-cell patch-clamp recordings indicated a delay in development of use-dependent desensitization (UDD) of P2X2aR but not of P2X2bR in HEK293 cells co-expressing P2X2aR and p35. In Xenopus oocytes, P2X2aRs showed a slower UDD than in HEK293 cells and Cdk5 activation prevented this effect. A similar effect was found in P2X2a/3R heteromeric currents in HEK293 cells. The P2X2aR-T372A mutant was resistant to UDD. In endogenous cells, we observed similar distribution between P2X2R and Cdk5/p35 by co-localization using immunofluorescence in primary culture of nociceptive neurons. Moreover, co-immunoprecipitation experiments showed an interaction between Cdk5 and P2X2R in mouse trigeminal ganglia. Finally, endogenous P2X2aR-mediated currents in PC12 cells and P2X2/3R mediated increases of intracellular Ca in trigeminal neurons were Cdk5 dependent, since inhibition with roscovitine accelerated the desensitization kinetics of these responses. These results indicate that the P2X2aR is a novel target for Cdk5-mediated phosphorylation, which might play important physiological roles including pain signaling.


Assuntos
Ativação do Canal Iônico/fisiologia , Receptores Purinérgicos P2X2/metabolismo , Células Receptoras Sensoriais/fisiologia , Treonina/metabolismo , Trifosfato de Adenosina/análogos & derivados , Trifosfato de Adenosina/farmacologia , Animais , Cálcio/metabolismo , Células Cultivadas , Quinase 5 Dependente de Ciclina/genética , Quinase 5 Dependente de Ciclina/metabolismo , Gânglios Espinais/citologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/genética , Camundongos , Mutação/genética , Oócitos , Inibidores de Proteínas Quinases/farmacologia , Purinas/farmacologia , Ratos , Receptores Purinérgicos P2X2/genética , Receptores Purinérgicos P2X3/genética , Receptores Purinérgicos P2X3/metabolismo , Roscovitina , Células Receptoras Sensoriais/efeitos dos fármacos , Treonina/genética , Xenopus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA