Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Genet Metab ; 137(3): 239-248, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36182715

RESUMO

Niemann-Pick disease Type C (NPC) is a lysosomal storage disorder caused by mutation of the NPC1/NPC2 genes, which ultimately results in the accumulation of unesterified cholesterol (UEC) in lysosomes, thereby inducing symptoms such as progressive neurodegeneration and hepatosplenomegaly. This study determines the effects of 6-O-α-maltosyl-ß cyclodextrin (Mal-ßCD) on lipid levels and synthesis in Npc1-deficient (Npc1-KO cells) and vehicle CHO cells. Compared to vehicle cells, Npc1-KO cells exhibited high level of UEC, and low levels of esterified cholesterols (ECs) and long-chain fatty acids (LCFAs). The difference in lipid levels between Npc1-KO and CHO cells was largely ameliorated by Mal-ßCD administration. Moreover, the effects of Mal-ßCD were reproduced in the lysosomes prepared from Npc1-KO cells. Stable isotope tracer analysis with extracellular addition of D4-deuterated palmitic acid (D4-PA) to Npc1-KO cells increased the synthesis of D4-deuterated LCFAs (D4-LCFAs) and D4-deuterated ECs (D4-ECs) in a Mal-ßCD-dependent manner. Simultaneous addition of D6-deuterated UEC (D6-UEC) and D4-PA promoted the Mal-ßCD-dependent synthesis of D6-/D4-ECs, consisting of D6-UEC and D4-PA, D4-deuterated stearic acid, or D4-deuterated myristic acid, in Npc1-KO cells. These results suggest that Mal-ßCD helps to maintain normal lipid metabolism by restoring balance among UEC, ECs, and LCFAs through acting on behalf of NPC1 in Npc1-KO cells and may therefore be useful in designing effective therapies for NPC.


Assuntos
Doença de Niemann-Pick Tipo C , beta-Ciclodextrinas , Animais , Cricetinae , Humanos , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Cricetulus , Células CHO , Metabolismo dos Lipídeos , beta-Ciclodextrinas/farmacologia , Colesterol/metabolismo , Proteína C1 de Niemann-Pick/metabolismo
2.
Mol Biol Rep ; 49(7): 5939-5952, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35368226

RESUMO

BACKGROUND: Gout is usually found in patients with atrial fibrillation (AF). K+ efflux is a common trigger of NLRP3 inflammasome activation which is involved in the pathogenesis of AF. We investigated the role of the K+ channel Kv1.5 in monosodium urate crystal (MSU)-induced activation of the NLRP3 inflammasome and electrical remodeling in mouse and human macrophages J774.1 and THP-1, and mouse atrial myocytes HL-1. METHODS AND RESULTS: Macrophages, primed with lipopolysaccharide (LPS), were stimulated by MSU. HL-1 cells were incubated with the conditioned medium (CM) from MSU-stimulated macrophages. Western blot, ELISA and patch clamp were used. MSU induced caspase-1 expression in LPS-primed J774.1 cells and IL-1ß secretion, suggesting NLRP3 inflammasome activation. A selective Kv1.5 inhibitor, diphenyl phosphine oxide-1 (DPO-1), and siRNAs against Kv1.5 suppressed the levels of caspase-1 and IL-1ß. MSU reduced intracellular K+ concentration which was prevented by DPO-1 and siRNAs against Kv1.5. MSU increased expression of Hsp70, and Kv1.5 on the plasma membrane. siRNAs against Hsp70 were suppressed but heat shock increased the expression of Hsp70, caspase-1, IL-1ß, and Kv1.5 in MSU-stimulated J774.1 cells. The CM from MSU-stimulated macrophages enhanced the expression of caspase-1, IL-1ß and Kv1.5 with increased Kv1.5-mediated currents that shortened action potential duration in HL-1 cells. These responses were abolished by DPO-1 and a siRNA against Kv1.5. CONCLUSIONS: Kv1.5 regulates MSU-induced activation of NLRP3 inflammasome in macrophages. MSUrelated activation of NLRP3 inflammasome and electrical remodeling in HL-1 cells are via macrophages. Kv1.5 may have therapeutic value for diseases related to gout-induced activation of the NLRP3 inflammsome, including AF.


Assuntos
Remodelamento Atrial , Gota , Canal de Potássio Kv1.5/metabolismo , Animais , Caspase 1/metabolismo , Gota/tratamento farmacológico , Gota/metabolismo , Gota/patologia , Humanos , Inflamassomos/metabolismo , Interleucina-1beta/genética , Lipopolissacarídeos/farmacologia , Macrófagos/metabolismo , Camundongos , Miócitos Cardíacos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ácido Úrico/metabolismo , Ácido Úrico/farmacologia
3.
Biol Pharm Bull ; 45(9): 1259-1268, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36047194

RESUMO

As Niemann-Pick disease type C (NPC) is difficult to diagnose owing to its various clinical symptoms; biomarker tests have been developed. Previously, we revealed urinary sulfated cholesterol metabolites as noninvasive biomarkers for NPC. However, LC/tandem mass spectrometry (LC/MS/MS) requires long separation time and large urine volumes. Recently, a basic mobile phase was reported to increase the MS intensity. Thus, we developed a highly sensitive and rapid LC/MS/MS method for analyzing urinary cholesterol metabolites using a basic mobile phase additive. 3ß-Sulfooxy-7ß-N-acetylglucosaminyl-5-cholenic acid, its glycine and taurine conjugates, 3ß-sulfooxy-7ß-hydroxy-5-cholenic acid, and 7-oxo form were measured, with selected reaction monitoring in negative ion mode. Oasis HLB and L-column 3 were used for column-switching LC/MS/MS and urine diluted 10-fold was employed as the sample. After trapping, gradient separation was performed using solutions containing 1% (v/v) ammonium solution. On average, a 16-fold increase in peak areas was observed compared to that obtained at pH 5.5 with the mobile phases. Although the previous method needed 60 min for separation from interference peaks, we succeeded to separate them in 7 min with optimized LC condition. Further, all compounds showed good linearity from 0.3-1000 ng/mL, with satisfactory intra- and inter-day reproducibility. The developed method was applied to the urinalysis of healthy participants and NPC patients. Overall, the concentrations of metabolites correlated with those obtained using the previous method. Therefore, we succeeded to increasing MS intensity and shorten LC running time; and the method is useful for the noninvasive diagnostic screening of patients with NPC.


Assuntos
Doença de Niemann-Pick Tipo C , Espectrometria de Massas em Tandem , Biomarcadores/urina , Colesterol/urina , Cromatografia Líquida de Alta Pressão , Cromatografia Líquida/métodos , Humanos , Doença de Niemann-Pick Tipo C/diagnóstico , Doença de Niemann-Pick Tipo C/urina , Reprodutibilidade dos Testes , Espectrometria de Massas em Tandem/métodos
4.
J Enzyme Inhib Med Chem ; 37(1): 1364-1374, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35575117

RESUMO

The late-onset form of Tay-Sachs disease displays when the activity levels of human ß-hexosaminidase A (HexA) fall below 10% of normal, due to mutations that destabilise the native folded form of the enzyme and impair its trafficking to the lysosome. Competitive inhibitors of HexA can rescue disease-causative mutant HexA, bearing potential as pharmacological chaperones, but often also inhibit the enzyme O-glucosaminidase (GlcNAcase; OGA), a serious drawback for translation into the clinic. We have designed sp2-iminosugar glycomimetics related to GalNAc that feature a neutral piperidine-derived thiourea or a basic piperidine-thiazolidine bicyclic core and behave as selective nanomolar competitive inhibitors of human Hex A at pH 7 with a ten-fold lower inhibitory potency at pH 5, a good indication for pharmacological chaperoning. They increased the levels of lysosomal HexA activity in Tay-Sachs patient fibroblasts having the G269S mutation, the highest prevalent in late-onset Tay-Sachs disease.


Assuntos
Doença de Tay-Sachs , Hexosaminidase A/genética , Humanos , Lisossomos , Piperidinas , Doença de Tay-Sachs/tratamento farmacológico , Doença de Tay-Sachs/genética , beta-N-Acetil-Hexosaminidases
5.
Int J Mol Sci ; 23(8)2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35457276

RESUMO

Niemann-Pick disease type C (NPC) is an autosomal recessive disease caused by a functional deficiency of cholesterol-transporting proteins in lysosomes, and exhibits various clinical symptoms. Since mitochondrial dysfunction in NPC has recently been reported, cholesterol catabolism to steroid hormones may consequently be impaired. In this study, we developed a comprehensive steroid hormone analysis method using liquid chromatography/tandem mass spectrometry (LC-MS/MS) and applied it to analyze changes in steroid hormone concentrations in NPC model cells. We investigated the analytical conditions for simultaneous LC-MS/MS analysis, which could be readily separated from each other and showed good reproducibility. The NPC phenotype was verified as an NPC model with mitochondrial abnormalities using filipin staining and organelle morphology observations. Steroid hormones in the cell suspension and cell culture medium were also analyzed. Steroid hormone analysis indicated that the levels of six steroid hormones were significantly decreased in the NPC model cell and culture medium compared to those in the wild-type cell and culture medium. These results indicate that some steroid hormones change during NPC pathophysiology and this change is accompanied by mitochondrial abnormalities.


Assuntos
Doença de Niemann-Pick Tipo C , Biomarcadores , Colesterol , Cromatografia Líquida/métodos , Hormônios , Humanos , Doença de Niemann-Pick Tipo C/metabolismo , Reprodutibilidade dos Testes , Esteroides , Espectrometria de Massas em Tandem/métodos
6.
Hum Mol Genet ; 28(11): 1894-1904, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30689867

RESUMO

Parkinson's disease (PD) is characterized by dopaminergic (DA) cell loss and the accumulation of pathological alpha synuclein (asyn), but its precise pathomechanism remains unclear, and no appropriate animal model has yet been established. Recent studies have shown that a heterozygous mutation of glucocerebrosidase (gba) is one of the most important genetic risk factors in PD. To create mouse model for PD, we crossed asyn Bacterial Artificial Chromosome transgenic mice with gba heterozygous knockout mice. These double-mutant (dm) mice express human asyn in a physiological manner through its native promoter and showed an increase in phosphorylated asyn in the regions vulnerable to PD, such as the olfactory bulb and dorsal motor nucleus of the vagus nerve. Only dm mice showed a significant reduction in DA cells in the substantia nigra pars compacta, suggesting these animals were suitable for a prodromal model of PD. Next, we investigated the in vivo mechanism by which GBA insufficiency accelerates PD pathology, focusing on lipid metabolism. Dm mice showed an increased level of glucosylsphingosine without any noticeable accumulation of glucosylceramide, a direct substrate of GBA. In addition, the overexpression of asyn resulted in decreased GBA activity in mice, while dm mice tended to show an even further decreased level of GBA activity. In conclusion, we created a novel prodromal mouse model to study the disease pathogenesis and develop novel therapeutics for PD and also revealed the mechanism by which heterozygous gba deficiency contributes to PD through abnormal lipid metabolism under conditions of an altered asyn expression in vivo.


Assuntos
Glucosilceramidase/genética , Doença de Parkinson/genética , alfa-Sinucleína/genética , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Humanos , Metabolismo dos Lipídeos/genética , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , Parte Compacta da Substância Negra/metabolismo , Parte Compacta da Substância Negra/patologia , Sintomas Prodrômicos
7.
Int J Mol Sci ; 22(1)2021 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-33466390

RESUMO

Niemann-Pick disease type C (NPC) is a recessive hereditary disease caused by mutation of the NPC1 or NPC2 gene. It is characterized by abnormality of cellular cholesterol trafficking with severe neuronal and hepatic injury. In this study, we investigated the potential of glycoprotein nonmetastatic melanoma protein B (GPNMB) to act as a biomarker reflecting the therapeutic effect of 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD) in an NPC mouse model. We measured serum, brain, and liver expression levels of GPNMB, and evaluated their therapeutic effects on NPC manifestations in the brain and liver after the intracerebroventricular administration of HP-ß-CD in Npc1 gene-deficient (Npc1-/-) mice. Intracerebroventricular HP-ß-CD inhibited cerebellar Purkinje cell damage in Npc1-/- mice and significantly reduced serum and cerebellar GPNMB levels. Interestingly, we also observed that the intracerebral administration significantly reduced hepatic GPNMB expression and elevated serum ALT in Npc1-/- mice. Repeated doses of intracerebroventricular HP-ß-CD (30 mg/kg, started at 4 weeks of age and repeated every 2 weeks) drastically extended the lifespan of Npc1-/- mice compared with saline treatment. In summary, our results suggest that GPNMB level in serum is a potential biomarker for evaluating the attenuation of NPC pathophysiology by intracerebroventricular HP-ß-CD treatment.


Assuntos
2-Hidroxipropil-beta-Ciclodextrina/administração & dosagem , Cerebelo/efeitos dos fármacos , Proteínas do Olho/metabolismo , Fígado/efeitos dos fármacos , Melanoma/metabolismo , Glicoproteínas de Membrana/metabolismo , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/metabolismo , Animais , Biomarcadores/metabolismo , Cerebelo/metabolismo , Colesterol/metabolismo , Modelos Animais de Doenças , Feminino , Glicoproteínas/metabolismo , Infusões Intraventriculares , Fígado/metabolismo , Masculino , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Células de Purkinje/efeitos dos fármacos , Células de Purkinje/metabolismo
8.
J Lipid Res ; 61(7): 972-982, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32457038

RESUMO

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus (SARS-CoV)-2 has resulted in the death of more than 328,000 persons worldwide in the first 5 months of 2020. Herculean efforts to rapidly design and produce vaccines and other antiviral interventions are ongoing. However, newly evolving viral mutations, the prospect of only temporary immunity, and a long path to regulatory approval pose significant challenges and call for a common, readily available, and inexpensive treatment. Strategic drug repurposing combined with rapid testing of established molecular targets could provide a pause in disease progression. SARS-CoV-2 shares extensive structural and functional conservation with SARS-CoV-1, including engagement of the same host cell receptor (angiotensin-converting enzyme 2) localized in cholesterol-rich microdomains. These lipid-enveloped viruses encounter the endosomal/lysosomal host compartment in a critical step of infection and maturation. Niemann-Pick type C (NP-C) disease is a rare monogenic neurodegenerative disease caused by deficient efflux of lipids from the late endosome/lysosome (LE/L). The NP-C disease-causing gene (NPC1) has been strongly associated with viral infection, both as a filovirus receptor (e.g., Ebola) and through LE/L lipid trafficking. This suggests that NPC1 inhibitors or NP-C disease mimetics could serve as anti-SARS-CoV-2 agents. Fortunately, there are such clinically approved molecules that elicit antiviral activity in preclinical studies, without causing NP-C disease. Inhibition of NPC1 may impair viral SARS-CoV-2 infectivity via several lipid-dependent mechanisms, which disturb the microenvironment optimum for viral infectivity. We suggest that known mechanistic information on NPC1 could be utilized to identify existing and future drugs to treat COVID-19.


Assuntos
Anticolesterolemiantes/uso terapêutico , Antivirais/uso terapêutico , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/tratamento farmacológico , Peptídeos e Proteínas de Sinalização Intracelular/genética , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Pandemias , Pneumonia Viral/tratamento farmacológico , Androstenos/uso terapêutico , Enzima de Conversão de Angiotensina 2 , Betacoronavirus/metabolismo , Betacoronavirus/patogenicidade , COVID-19 , Colesterol/metabolismo , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Reposicionamento de Medicamentos/métodos , Humanos , Hidroxicloroquina/uso terapêutico , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/virologia , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/genética , Doença de Niemann-Pick Tipo C/metabolismo , Doença de Niemann-Pick Tipo C/patologia , Peptidil Dipeptidase A/genética , Peptidil Dipeptidase A/metabolismo , Pneumonia Viral/diagnóstico , Pneumonia Viral/epidemiologia , Ligação Proteica , Receptores Virais/antagonistas & inibidores , Receptores Virais/genética , Receptores Virais/metabolismo , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo
9.
Biol Pharm Bull ; 43(9): 1398-1406, 2020 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-32581190

RESUMO

Early diagnosis of Niemann-Pick diseases (NPDs) is important for better prognosis of such diseases. N-Palmitoyl-O-phosphocholine-serine (PPCS) is a new NPD biomarker possessing high sensitivity, and with its combination with sphingosylphosphocholine (SPC) it may be possible to distinguish NPD-C from NPD-A/B. In this study, a rapid liquid chromatography-tandem mass spectrometry (LC-MS/MS) method (method 1) and a validated LC-MS/MS analysis (method 2) of PPCS and SPC were developed, and we have proposed a diagnostic screening strategy for NPDs using a combination of serum PPCS and SPC concentrations. Nexera and API 5000 were used as LC-MS/MS systems. C18 columns with lengths of 10 and 50 mm were used for method 1 and 2, respectively. 2H3-Labeled PPCS and nor-SPC were used as internal standards. Selective reaction monitoring in positive-ion mode was used for MS/MS. Run times of 1.2 and 8 min were set for methods 1 and 2, respectively. In both methods 1 and 2, two analytes showed high linearity in the range of 1-4000 ng/mL. Method 2 provided high accuracy and precision in method validation. Serum concentrations of both analytes were significantly higher in NPD-C patients than those of healthy subjects in both methods. Serum PPCS correlated between methods 1 and 2; however, it was different in the case of SPC. The serum PPCS/SPC ratio was different in healthy subjects, NPD-C, and NPD-A/B. These results suggest that using a combination of the two LC-MS/MS analytical methods for PPCS and SPC is useful for diagnostic screening of NPDs.


Assuntos
Doenças de Niemann-Pick/diagnóstico , Fosfatidilcolinas/sangue , Fosforilcolina/análogos & derivados , Esfingosina/análogos & derivados , Cromatografia Líquida , Humanos , Doenças de Niemann-Pick/sangue , Fosforilcolina/sangue , Esfingosina/sangue , Espectrometria de Massas em Tandem
10.
Int J Mol Sci ; 21(23)2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-33266180

RESUMO

Morquio B disease (MBD) is an autosomal recessive GLB1-gene-related lysosomal storage disease, presenting with a peculiar type of dysostosis multiplex which is also observed in GALNS-related Morquio A disease. MBD may present as pure skeletal phenotype (pure MBD) or in combination with the neuronopathic manifestations seen in type 2 (juvenile) or type 3 (late onset) GM1 gangliosidosis (MBD plus). The main skeletal features are progressive growth impairment, kyphoscoliosis, coxa/genua valga, joint laxity, platyspondyly and odontoid hypoplasia. The main neuronopathic features are dystonia, ataxia, and intellectual/developmental/speech delay. Spinal cord compression occurs as a complication of spinal dysostosis. Chronic pain is reported, along with mobility issues and challenges with daily living and self-care activities, as the most common health concern. The most commonly reported orthopedic surgeries are hip and knee replacements. Keratan sulphate-derived oligosaccharides are characteristic biomarkers. Residual ß-galactosidase activities measured against synthetic substrates do not correlate with the phenotype. W273 L and T500A are the most frequently observed GLB1 variants in MBD, W273L being invariably associated with pure MBD. Cytokines play a role in joint destruction and pain, providing a promising treatment target. In the future, patients may benefit from small molecule therapies, and gene and enzyme replacement therapies, which are currently being developed for GM1 gangliosidosis.


Assuntos
Mucopolissacaridose IV/diagnóstico , Mucopolissacaridose IV/terapia , Biomarcadores , Citocinas/metabolismo , Diagnóstico Diferencial , Suscetibilidade a Doenças , Gangliosidose GM1/diagnóstico , Gangliosidose GM1/genética , Gangliosidose GM1/terapia , Humanos , Mucopolissacaridose IV/etiologia , Mutação , Fenótipo , beta-Galactosidase/genética
11.
Int J Mol Sci ; 21(3)2020 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-32019132

RESUMO

Niemann-Pick disease type C (NPC) is an autosomal recessive disorder characterized by abnormal accumulation of free cholesterol and sphingolipids in lysosomes. The iminosugar miglustat, which inhibits hexosylceramide synthesis, is used for NPC treatment, and 2-hydroxypropyl-ß-cyclodextrin (HP-ß-CD), a cyclic oligosaccharide derivative, is being developed to treat NPC. Moreover, therapeutic potential of 2-hydroxypropyl-γ-cyclodextrin (HP-γ-CD) was shown in NPC models, although its mechanism of action remains unclear. Here, we investigated the effects of HP-ß-CD, HP-γ-CD, and their homolog 2-hydroxypropyl-α-cyclodextrin (HP-α-CD) on lipid accumulation in Npc1-null Chinese hamster ovary (CHO) cells compared with those of miglustat. HP-ß-CD and HP-γ-CD, unlike HP-α-CD, reduced intracellular free cholesterol levels and normalized the lysosome changes in Npc1-null cells but not in wild-type CHO cells. In contrast, miglustat did not normalize intracellular free cholesterol accumulation or lysosome changes in Npc1-null cells. However, miglustat decreased the levels of hexosylceramide and tended to increase those of sphingomyelins in line with its action as a glucosylceramide synthase inhibitor in both Npc1-null and wild-type CHO cells. Interestingly, HP-ß-CD and HP-γ-CD, unlike HP-α-CD, reduced sphingomyelins in Npc1-null, but not wild-type, cells. In conclusion, HP-ß-CD and HP-γ-CD reduce the accumulation of sphingolipids, mainly sphingomyelins, and free cholesterol as well as lysosome changes in Npc1-null, but not in wild-type, CHO cells.


Assuntos
1-Desoxinojirimicina/análogos & derivados , 2-Hidroxipropil-beta-Ciclodextrina/farmacologia , Ciclodextrinas/farmacologia , Proteína C1 de Niemann-Pick/genética , Doença de Niemann-Pick Tipo C/tratamento farmacológico , 1-Desoxinojirimicina/uso terapêutico , Animais , Células CHO , Colesterol/metabolismo , Cricetulus , Lisossomos/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , Esfingolipídeos/metabolismo
12.
Int J Mol Sci ; 20(20)2019 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-31658747

RESUMO

Niemann-Pick disease type C (NPC) is an autosomal recessive disorder caused by the mutation of cholesterol-transporting proteins. In addition, early treatment is important for good prognosis of this disease because of the progressive neurodegeneration. However, the diagnosis of this disease is difficult due to a variety of clinical spectrum. Lysosphingomyelin-509, which is one of the most useful biomarkers for NPC, was applied for the rapid and easy detection of NPC. The fact that its chemical structure was unknown until recently implicates the unrevealed pathophysiology and molecular mechanisms of NPC. In this study, we aimed to elucidate the structure of lysosphingomyelin-509 by various mass spectrometric techniques. As our identification strategy, we adopted analytical and organic chemistry approaches to the serum of patients with NPC. Chemical derivatization and hydrogen abstraction dissociation-tandem mass spectrometry were used for the determination of function groups and partial structure, respectively. As a result, we revealed the exact structure of lysosphingomyelin-509 as N-acylated and O-phosphocholine adducted serine. Additionally, we found that a group of metabolites with N-acyl groups were increased considerably in the serum/plasma of patients with NPC as compared to that of other groups using targeted lipidomics analysis. Our techniques were useful for the identification of lysosphingomyelin-509.


Assuntos
Lipídeos/química , Lipídeos/isolamento & purificação , Doença de Niemann-Pick Tipo C/diagnóstico , Fosforilcolina/química , Fosforilcolina/isolamento & purificação , Serina/química , Biomarcadores/sangue , Feminino , Humanos , Masculino , Doença de Niemann-Pick Tipo C/metabolismo , Fosforilcolina/metabolismo , Serina/metabolismo , Espectrometria de Massas em Tandem/métodos
13.
Int J Mol Sci ; 20(5)2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30845767

RESUMO

Niemann-Pick disease Type C (NPC) is a rare lysosomal storage disease characterized by the dysfunction of intracellular cholesterol trafficking with progressive neurodegeneration and hepatomegaly. We evaluated the potential of 6-O-α-maltosyl-ß-cyclodextrin (G2-ß-CD) as a drug candidate against NPC. The physicochemical properties of G2-ß-CD as an injectable agent were assessed, and molecular interactions between G2-ß-CD and free cholesterol were studied by solubility analysis and two-dimensional proton nuclear magnetic resonance spectroscopy. The efficacy of G2-ß-CD against NPC was evaluated using Npc1 deficient Chinese hamster ovary (CHO) cells and Npc1 deficient mice. G2-ß-CD in aqueous solution showed relatively low viscosity and surface activity; characteristics suitable for developing injectable formulations. G2-ß-CD formed higher-order inclusion complexes with free cholesterol. G2-ß-CD attenuated dysfunction of intercellular cholesterol trafficking and lysosome volume in Npc1 deficient CHO cells in a concentration dependent manner. Weekly subcutaneous injections of G2-ß-CD (2.9 mmol/kg) ameliorated abnormal cholesterol metabolism, hepatocytomegaly, and elevated serum transaminases in Npc1 deficient mice. In addition, a single cerebroventricular injection of G2-ß-CD (21.4 µmol/kg) prevented Purkinje cell loss in the cerebellum, body weight loss, and motor dysfunction in Npc1 deficient mice. In summary, G2-ß-CD possesses characteristics favorable for injectable formulations and has therapeutic potential against in vitro and in vivo NPC models.


Assuntos
Colesterol/metabolismo , Proteína C1 de Niemann-Pick/deficiência , Doença de Niemann-Pick Tipo C/tratamento farmacológico , beta-Ciclodextrinas/administração & dosagem , Animais , Células CHO , Cricetinae , Cricetulus , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Injeções Subcutâneas , Camundongos , Doença de Niemann-Pick Tipo C/metabolismo , Ressonância Magnética Nuclear Biomolecular , Resultado do Tratamento , beta-Ciclodextrinas/farmacologia
14.
J Mol Cell Cardiol ; 115: 158-169, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29355491

RESUMO

The human ether-a-go-go-related gene (hERG) encodes the α subunit of a rapidly activating delayed-rectifier potassium (IKr) channel. Mutations of the hERG cause long QT syndrome type 2 (LQT2). Acetylation of lysine residues occurs in a subset of non-histone proteins and this modification is controlled by both histone acetyltransferases and deacetylases (HDACs). The aim of this study was to clarify effects of HDAC(s) on wild-type (WT) and mutant hERG proteins. WThERG and two trafficking-defective mutants (G601S and R752W) were transiently expressed in HEK293 cells, which were treated with a pan-HDAC inhibitor Trichostatin A (TSA) or an isoform-selective HDAC6 inhibitor Tubastatin A (TBA). Both TSA and TBA increased protein levels of WThERG and induced expression of mature forms of the two mutants. Immunoprecipitation showed an interaction between HDAC6 and immature forms of hERG. Coexpression of HDAC6 decreased acetylation and, reciprocally, increased ubiquitination of hERG, resulting in its decreased expression. siRNA against HDAC6, as well as TBA, exerted opposite effects. Immunochemistry revealed that HDAC6 knockdown increased expression of the WThERG and two mutants both in the endoplasmic reticulum and on the cell surface. Electrophysiology showed that HDAC6 knockdown or TBA treatment increased the hERG channel current corresponding to the rapidly activating delayed-rectifier potassium current (IKr) in HEK293 cells stably expressing the WT or mutants. Three lysine residues (K116, K495 and K757) of hERG were predicted to be acetylated. Substitution of these lysine residues with arginine eliminated HDAC6 effects. In HL-1 mouse cardiomyocytes, TBA enhanced endogenous ERG expression, increased IKr, and shortened action potential duration. These results indicate that hERG is a substrate of HDAC6. HDAC6 inhibition induced acetylation of hERG which counteracted ubiquitination leading its stabilization. HDAC6 inhibition may be a novel therapeutic option for LQT2.


Assuntos
Canal de Potássio ERG1/metabolismo , Desacetilase 6 de Histona/metabolismo , Proteínas Mutantes/metabolismo , Acetilação/efeitos dos fármacos , Animais , Canal de Potássio ERG1/química , Células HEK293 , Inibidores de Histona Desacetilases/farmacologia , Humanos , Lisina/metabolismo , Camundongos , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Ubiquitinação/efeitos dos fármacos
15.
J Biol Chem ; 292(11): 4395-4410, 2017 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-28031458

RESUMO

Niemann-Pick type C (NP-C) disease is a fatal genetic lipidosis for which there is no Food and Drug Administration (FDA)-approved therapy. Vorinostat, an FDA-approved inhibitor of histone deacetylases, ameliorates lysosomal lipid accumulation in cultured NP-C patient fibroblasts. To assess the therapeutic potential of histone deacetylase inhibition, we pursued these in vitro observations in two murine models of NP-C disease. Npc1nmf164 mice, which express a missense mutation in the Npc1 gene, were treated intraperitoneally, from weaning, with the maximum tolerated dose of vorinostat (150 mg/kg, 5 days/week). Disease progression was measured via gene expression, liver function and pathology, serum and tissue lipid levels, body weight, and life span. Transcriptome analyses of treated livers indicated multiple changes consistent with reversal of liver dysfunction that typifies NP-C disease. Significant improvements in liver pathology and function were achieved by this treatment regimen; however, NPC1 protein maturation and levels, disease progression, weight loss, and animal morbidity were not detectably altered. Vorinostat concentrations were >200 µm in the plasma compartment of treated animals but were almost 100-fold lower in brain tissue. Apolipoprotein B metabolism and the expression of key components of lipid homeostasis in primary hepatocytes from null (Npc1-/-) and missense (Npc1nmf164 ) mutant mice were altered by vorinostat treatment, consistent with a response by these cells independent of the status of the Npc1 locus. These results suggest that HDAC inhibitors have utility to treat visceral NP-C disease. However, it is clear that improved blood-brain barrier penetration will be required to alleviate the neurological symptoms of human NP-C disease.


Assuntos
Inibidores de Histona Desacetilases/uso terapêutico , Ácidos Hidroxâmicos/uso terapêutico , Fígado/efeitos dos fármacos , Fígado/fisiopatologia , Doença de Niemann-Pick Tipo C/tratamento farmacológico , Doença de Niemann-Pick Tipo C/genética , Proteínas/genética , Animais , Apolipoproteínas B/metabolismo , Células Cultivadas , Colesterol/genética , Colesterol/metabolismo , Modelos Animais de Doenças , Inibidores de Histona Desacetilases/farmacocinética , Homeostase/efeitos dos fármacos , Humanos , Ácidos Hidroxâmicos/farmacocinética , Peptídeos e Proteínas de Sinalização Intracelular , Fígado/metabolismo , Fígado/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mutação de Sentido Incorreto , Proteína C1 de Niemann-Pick , Doença de Niemann-Pick Tipo C/patologia , Doença de Niemann-Pick Tipo C/fisiopatologia , Proteínas/metabolismo , Transcriptoma/efeitos dos fármacos , Vorinostat
16.
Molecules ; 23(4)2018 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-29673163

RESUMO

A series of sp²-iminosugar glycomimetics differing in the reducing or nonreducing character, the configurational pattern (d-gluco or l-ido), the architecture of the glycone skeleton, and the nature of the nonglycone substituent has been synthesized and assayed for their inhibition properties towards commercial glycosidases. On the basis of their affinity and selectivity towards GH1 ß-glucosidases, reducing and nonreducing bicyclic derivatives having a hydroxylation profile of structural complementarity with d-glucose and incorporating an N'-octyl-isourea or -isothiourea segment were selected for further evaluation of their inhibitory/chaperoning potential against human glucocerebrosidase (GCase). The 1-deoxynojirimycin (DNJ)-related nonreducing conjugates behaved as stronger GCase inhibitors than the reducing counterparts and exhibited potent chaperoning capabilities in Gaucher fibroblasts hosting the neuronopathic G188S/G183W mutation, the isothiourea derivative being indeed one of the most efficient chaperone candidates reported up to date (70% activity enhancement at 20 pM). At their optimal concentration, the four selected compounds promoted mutant GCase activity enhancements over 3-fold; yet, the inhibitor/chaperoning balance became unfavorable at much lower concentration for nonreducing as compared to reducing derivatives.


Assuntos
Inibidores Enzimáticos/uso terapêutico , Doença de Gaucher/tratamento farmacológico , Doença de Gaucher/enzimologia , Glucosilceramidase/antagonistas & inibidores , Glucosilceramidase/genética , Imino Açúcares/uso terapêutico , Chaperonas Moleculares/uso terapêutico , 1-Desoxinojirimicina/uso terapêutico , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Doença de Gaucher/genética , Glucosamina/análogos & derivados , Glucosamina/uso terapêutico , Humanos , Mutação
17.
Mol Genet Metab ; 118(3): 214-219, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27184436

RESUMO

This study was conducted to evaluate the attenuating potential of 2-hydroxypropyl-ß-cyclodextrin (HPBCD) against Niemann-Pick Type C (NPC) disease, as well as the physical and chemical properties, particularly the cholesterol-solubilizing ability, in an NPC disease model in vitro. As parameters of NPC abnormalities, intracellular free and esterified cholesterol levels and lysosome volume were measured in Npc1 null Chinese hamster ovary cells. HPBCD showed dose-dependent effects against dysfunctional intracellular cholesterol trafficking, such as the accumulation and shortage of free and esterified cholesterols, respectively, in Npc1 null cells. However, the effectiveness was gradually offset by exposure to ≥8mM HPBCD. The same effect was also observed for increasing lysosome volume in Npc1 null cells. The degree of substitution of the hydroxypropyl group had little influence on the attenuating effects of HPBCD against the NPC abnormalities, at least in the range between 2.8 and 7.4. Next, we compared the effects of other hydroxyalkylated ß-cyclodextrin derivatives with different cholesterol-solubilizing abilities, such as 2-hydroxyethyl-ß-cyclodextrin (HEBCD) and 2-hydroxybutyl-ß-cyclodextrin (HBBCD). The cholesterol solubilizing potential, attenuating effects against NPC abnormalities and cytotoxicity induction were HBBCD≫HPBCD>HEBCD, HBBCD=HPBCD>HEBCD and HBBCD≫HPBCD=HEBCD, respectively. HPBCD may be superior in terms of safety and efficacy in Npc1 null cells compared with HEBCD and HBBCD. The results of this study will provide a rationale for the optimization of HPBCD therapy for NPC disease.


Assuntos
Proteínas de Transporte/metabolismo , Colesterol/metabolismo , Doença de Niemann-Pick Tipo C/metabolismo , beta-Ciclodextrinas/farmacologia , 2-Hidroxipropil-beta-Ciclodextrina , Animais , Células CHO , Cricetulus , Relação Dose-Resposta a Droga , Humanos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Modelos Biológicos , Doença de Niemann-Pick Tipo C/tratamento farmacológico , beta-Ciclodextrinas/uso terapêutico
18.
Circ J ; 80(12): 2443-2452, 2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27803431

RESUMO

BACKGROUND: Long QT syndrome 2 (LQT2) is caused by mutations in the human ether-a-go-go-related gene (hERG). Most of its mutations give rise to unstable hERG proteins degraded by the proteasome. Recently, carbachol was reported to stabilize the wild-type hERG-FLAG via activation of the muscarinic type 3 receptor (M3-mAChR). Its action on mutant hERG-FLAG, however, remains uninvestigated.Methods and Results:A novel mutant hERG-FLAG carried 2 mutations: an amino acid substitution G572S and an in-frame insertion D1037_V1038insGD. When expressed in HEK293 cells, this mutant hERG-FLAG was degraded by the proteasome and failed to be transported to the cell surface. Carbachol restored stability of the mutant hERG-FLAG and facilitated cell-surface expression. Carbachol activated PKC, augmented phosphorylation of heat shock factor 1 (HSF1) and enhanced expression of heat shock proteins (hsps), hsp70 and hsp90. Both a M3-mAChR antagonist, 4-DAMP, and a PKC inhibitor, bisindolylmaleimide, abolished carbachol-induced stabilization of the mutant hERG-FLAG. CONCLUSIONS: M3-mAChR activation leads to enhancement of hsp expression via PKC-dependent phosphorylation of HSF1, thereby stabilizing the mutant hERG-FLAG protein. Thus, M3-mAChR activators may have a therapeutic value for patients with LQT2. (Circ J 2016; 80: 2443-2452).


Assuntos
Proteínas de Ligação a DNA/metabolismo , Canal de Potássio ERG1 , Síndrome do QT Longo , Mutação , Receptor Muscarínico M3/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo , Adolescente , Proteínas de Ligação a DNA/genética , Canal de Potássio ERG1/genética , Canal de Potássio ERG1/metabolismo , Células HEK293 , Fatores de Transcrição de Choque Térmico , Humanos , Síndrome do QT Longo/genética , Síndrome do QT Longo/metabolismo , Masculino , Fosforilação/genética , Estabilidade Proteica , Receptor Muscarínico M3/genética , Fatores de Transcrição/genética , Transfecção
19.
J Mol Cell Cardiol ; 86: 138-46, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26232501

RESUMO

Kv1.5 confers ultra-rapid delayed-rectifier potassium channel current (IKur) which contributes to repolarization of the atrial action potential. Kv1.5 proteins, degraded via the ubiquitin-proteasome pathway, decreased in some atrial fibrillation patients. Carboxyl-terminus heat shock cognate 70-interacting protein (CHIP), an E3 ubiquitin ligase, is known to ubiquitinate short-lived proteins. Here, we investigated the roles of CHIP in Kv1.5 degradation to provide insights into the mechanisms of Kv1.5 decreases and treatments targeting Kv1.5 for atrial fibrillation. Coexpression of CHIP with Kv1.5 in HEK293 cells increased Kv1.5 protein ubiquitination and decreased the protein level. Immunofluorescence revealed decreases of Kv1.5 proteins in the endoplasmic reticulum and on the cell membrane. A siRNA against CHIP suppressed Kv1.5 protein ubiquitination and increased its protein level. CHIP mutants, lacking either the N-terminal tetratricopeptide region domain or the C-terminal U-box domain, failed to exert these effects on Kv1.5 proteins. Immunoprecipitation showed that CHIP formed complexes with Kv1.5 proteins and heat shock cognate protein 70 (Hsc70). Effects of Hsc70 on Kv1.5 were similar to CHIP by altering interaction of CHIP with Kv1.5 protein. Coexpression of CHIP and Hsc70 with Kv1.5 additionally enhanced Kv1.5 ubiquitination. Kv1.5 currents were decreased by overexpression of CHIP or Hsc70 but were increased by knockdown of CHIP or Hsc70 in HEK 293 cells stably expressing Kv1.5. These effects of CHIP and Hsc70 were also observed on endogenous Kv1.5 in HL-1 mouse cardiomyocytes, decreasing IKur and prolonging action potential duration. These results indicate that CHIP decreases the Kv1.5 protein level and functional channel by facilitating its degradation in concert with chaperone Hsc70.


Assuntos
Fibrilação Atrial/genética , Proteínas de Choque Térmico HSC70/genética , Canal de Potássio Kv1.5/genética , Ubiquitina-Proteína Ligases/genética , Animais , Fibrilação Atrial/patologia , Regulação da Expressão Gênica , Células HEK293 , Proteínas de Choque Térmico HSC70/biossíntese , Proteínas de Choque Térmico HSC70/metabolismo , Humanos , Canal de Potássio Kv1.5/biossíntese , Canal de Potássio Kv1.5/metabolismo , Camundongos , Ligação Proteica , Estrutura Terciária de Proteína , RNA Interferente Pequeno , Transdução de Sinais , Ubiquitina-Proteína Ligases/biossíntese , Ubiquitina-Proteína Ligases/metabolismo , Ubiquitinação/genética
20.
J Biol Chem ; 289(28): 19714-25, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-24891511

RESUMO

Most cases with Niemann-Pick disease type C carry mutations in NPC1. Some of the mutations, including the most frequent I1061T, give rise to unstable proteins selected for endoplasmic reticulum-associated degradation. The purpose of the current study was to shed mechanistic insights into the degradation process. A proteasome inhibitor MG132 prolonged the life span of the wild-type NPC1 expressed in COS cells. The expressed protein associated with multiple chaperones including heat shock protein 90 (Hsp90), Hsp70, heat shock cognate protein 70 (Hsc70), and calnexin. Accordingly, expression of an E3 ligase CHIP (carboxyl terminus of Hsp70-interacting protein) enhanced MG132-induced accumulation of ubiquitylated NPC1. Co-expression and RNAi knockdown experiments in HEK cells indicated that Hsp70/Hsp90 stabilized NPC1, whereas Hsc70 destabilized it. In human fibroblasts carrying the I1061T mutation, adenovirus-mediated expression of Hsp70 or treatment with an HSP-inducer geranylgeranylacetone (GGA) increased the level of the mutant protein. In GGA-treated cells, the rescued protein was localized in the late endosome and ameliorated cholesterol accumulation. MALDI-TOF mass spectrometry revealed three lysine residues at amino acids 318, 792, and 1180 as potential ubiquitin-conjugation sites. Substitutions of the three residues with alanine yielded a mutant protein with a steady-state level more than three times higher than that of the wild-type. Introduction of the same substitutions to the I1061T mutant resulted in an increase in its protein level and functional restoration. These findings indicated the role of HSPs in quality control of NPC1 and revealed the role of three lysine residues as ubiquitin-conjugation sites.


Assuntos
Proteínas de Choque Térmico HSC70/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Membrana/metabolismo , Doenças de Niemann-Pick/metabolismo , Ubiquitina/metabolismo , Substituição de Aminoácidos , Animais , Células COS , Chlorocebus aethiops , Inibidores de Cisteína Proteinase/farmacologia , Técnicas de Silenciamento de Genes , Células HEK293 , Proteínas de Choque Térmico HSC70/genética , Proteínas de Choque Térmico HSP90/genética , Humanos , Leupeptinas/farmacologia , Proteínas de Membrana/genética , Proteínas de Membrana Transportadoras , Mutação de Sentido Incorreto , Doenças de Niemann-Pick/genética , Terpenos/farmacologia , Ubiquitina/genética , Ubiquitinação/efeitos dos fármacos , Ubiquitinação/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA