Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 86
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 178(1): 216-228.e21, 2019 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-31204103

RESUMO

The Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is the leading target for next-generation vaccines against the disease-causing blood-stage of malaria. However, little is known about how human antibodies confer functional immunity against this antigen. We isolated a panel of human monoclonal antibodies (mAbs) against PfRH5 from peripheral blood B cells from vaccinees in the first clinical trial of a PfRH5-based vaccine. We identified a subset of mAbs with neutralizing activity that bind to three distinct sites and another subset of mAbs that are non-functional, or even antagonistic to neutralizing antibodies. We also identify the epitope of a novel group of non-neutralizing antibodies that significantly reduce the speed of red blood cell invasion by the merozoite, thereby potentiating the effect of all neutralizing PfRH5 antibodies as well as synergizing with antibodies targeting other malaria invasion proteins. Our results provide a roadmap for structure-guided vaccine development to maximize antibody efficacy against blood-stage malaria.


Assuntos
Anticorpos Monoclonais/imunologia , Anticorpos Neutralizantes/imunologia , Anticorpos Antiprotozoários/imunologia , Eritrócitos/parasitologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Plasmodium falciparum/imunologia , Adolescente , Adulto , Animais , Sítios de Ligação , Proteínas de Transporte/imunologia , Reações Cruzadas/imunologia , Epitopos/imunologia , Feminino , Células HEK293 , Voluntários Saudáveis , Humanos , Malária Falciparum/parasitologia , Masculino , Merozoítos/fisiologia , Pessoa de Meia-Idade , Plasmodium falciparum/metabolismo , Proteínas de Protozoários/imunologia , Coelhos , Ratos , Ratos Sprague-Dawley , Adulto Jovem
2.
Nature ; 625(7995): 578-584, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38123677

RESUMO

The symptoms of malaria occur during the blood stage of infection, when parasites invade and replicate within human erythrocytes. The PfPCRCR complex1, containing PfRH5 (refs. 2,3), PfCyRPA, PfRIPR, PfCSS and PfPTRAMP, is essential for erythrocyte invasion by the deadliest human malaria parasite, Plasmodium falciparum. Invasion can be prevented by antibodies3-6 or nanobodies1 against each of these conserved proteins, making them the leading blood-stage malaria vaccine candidates. However, little is known about how PfPCRCR functions during invasion. Here we present the structure of the PfRCR complex7,8, containing PfRH5, PfCyRPA and PfRIPR, determined by cryogenic-electron microscopy. We test the hypothesis that PfRH5 opens to insert into the membrane9, instead showing that a rigid, disulfide-locked PfRH5 can mediate efficient erythrocyte invasion. We show, through modelling and an erythrocyte-binding assay, that PfCyRPA-binding antibodies5 neutralize invasion through a steric mechanism. We determine the structure of PfRIPR, showing that it consists of an ordered, multidomain core flexibly linked to an elongated tail. We also show that the elongated tail of PfRIPR, which is the target of growth-neutralizing antibodies6, binds to the PfCSS-PfPTRAMP complex on the parasite membrane. A modular PfRIPR is therefore linked to the merozoite membrane through an elongated tail, and its structured core presents PfCyRPA and PfRH5 to interact with erythrocyte receptors. This provides fresh insight into the molecular mechanism of erythrocyte invasion and opens the way to new approaches in rational vaccine design.


Assuntos
Eritrócitos , Malária Falciparum , Complexos Multiproteicos , Parasitos , Plasmodium falciparum , Proteínas de Protozoários , Animais , Humanos , Anticorpos Neutralizantes/imunologia , Antígenos de Protozoários/química , Antígenos de Protozoários/imunologia , Microscopia Crioeletrônica , Dissulfetos/química , Dissulfetos/metabolismo , Eritrócitos/metabolismo , Eritrócitos/parasitologia , Vacinas Antimaláricas/imunologia , Malária Falciparum/imunologia , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Malária Falciparum/patologia , Merozoítos/metabolismo , Complexos Multiproteicos/química , Complexos Multiproteicos/imunologia , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Parasitos/metabolismo , Parasitos/patogenicidade , Plasmodium falciparum/metabolismo , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/ultraestrutura
3.
Immunity ; 53(4): 697-699, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-33053324

RESUMO

In this issue of Immunity, Wang et al. report isolation of a human antibody derived from volunteers immunized during a malaria vaccine trial. This antibody binds a novel epitope and proves potent at preventing mosquito transmission of the malaria parasite.


Assuntos
Antimaláricos , Vacinas Antimaláricas , Malária , Animais , Anticorpos Monoclonais , Anticorpos Antiprotozoários , Humanos , Fígado , Malária/prevenção & controle , Esporozoítos
4.
Mol Cell ; 79(3): 406-415.e7, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32692975

RESUMO

Protein secretion in eukaryotes and prokaryotes involves a universally conserved protein translocation channel formed by the Sec61 complex. Unrelated small-molecule natural products and synthetic compounds inhibit Sec61 with differential effects for different substrates or for Sec61 from different organisms, making this a promising target for therapeutic intervention. To understand the mode of inhibition and provide insight into the molecular mechanism of this dynamic translocon, we determined the structure of mammalian Sec61 inhibited by the Mycobacterium ulcerans exotoxin mycolactone via electron cryo-microscopy. Unexpectedly, the conformation of inhibited Sec61 is optimal for substrate engagement, with mycolactone wedging open the cytosolic side of the lateral gate. The inability of mycolactone-inhibited Sec61 to effectively transport substrate proteins implies that signal peptides and transmembrane domains pass through the site occupied by mycolactone. This provides a foundation for understanding the molecular mechanism of Sec61 inhibitors and reveals novel features of translocon function and dynamics.


Assuntos
Macrolídeos/farmacologia , Microssomos/química , Ribossomos/química , Canais de Translocação SEC/química , Animais , Sítios de Ligação , Sistema Livre de Células/metabolismo , Cães , Expressão Gênica , Células HCT116 , Células HEK293 , Humanos , Macrolídeos/química , Macrolídeos/isolamento & purificação , Microssomos/metabolismo , Simulação de Dinâmica Molecular , Mutação , Mycobacterium ulcerans/química , Mycobacterium ulcerans/patogenicidade , Pâncreas/química , Pâncreas/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Ribossomos/metabolismo , Canais de Translocação SEC/antagonistas & inibidores , Canais de Translocação SEC/genética , Canais de Translocação SEC/metabolismo , Homologia Estrutural de Proteína , Especificidade por Substrato
5.
Nature ; 587(7833): 309-312, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32650338

RESUMO

The Plasmodium species that cause malaria are obligate intracellular parasites, and disease symptoms occur when these parasites replicate in human blood. Despite the risk of immune detection, the parasite delivers proteins that bind to host receptors on the cell surfaces of infected erythrocytes. In the causative parasite of the most deadly form of malaria in humans, Plasmodium falciparum, RIFINs form the largest family of surface proteins displayed by erythrocytes1. Some RIFINs can bind to inhibitory immune receptors, and these RIFINs act as targets for unusual antibodies that contain a LAIR1 ectodomain2-4 or as ligands for LILRB15. RIFINs stimulate the activation of and signalling by LILRB15, which could potentially lead to the dampening of human immune responses. Here, to understand how RIFINs activate LILRB1-mediated signalling, we determine the structure of a RIFIN bound to LILRB1. We show that this RIFIN mimics the natural activating ligand of LILRB1, MHC class I, in its LILRB1-binding mode. A single mutation in the RIFIN disrupts the complex, blocks LILRB1 binding of all tested RIFINs and abolishes signalling in a reporter assay. In a supported lipid bilayer system, which mimics the activation of natural killer (NK) cells by antibody-dependent cell-mediated cytotoxicity, both RIFIN and MHC are recruited to the immunological synapse of NK cells and reduce the activation of NK cells, as measured by the mobilization of perforin. Therefore, LILRB1-binding RIFINs mimic the binding mode of the natural ligand of LILRB1 and suppress the function of NK cells.


Assuntos
Receptor B1 de Leucócitos Semelhante a Imunoglobulina/química , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/imunologia , Malária Falciparum/imunologia , Proteínas de Membrana/química , Proteínas de Membrana/imunologia , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Sequência de Aminoácidos , Animais , Citotoxicidade Celular Dependente de Anticorpos/imunologia , Sítios de Ligação/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Humanos , Células Matadoras Naturais/citologia , Células Matadoras Naturais/imunologia , Receptor B1 de Leucócitos Semelhante a Imunoglobulina/metabolismo , Ligantes , Bicamadas Lipídicas , Ativação Linfocitária , Malária Falciparum/parasitologia , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Mimetismo Molecular/imunologia , Mutação , Perforina/metabolismo , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Transdução de Sinais
6.
Infect Immun ; 92(3): e0039523, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38294241

RESUMO

HpARI is an immunomodulatory protein secreted by the intestinal nematode Heligmosomoides polygyrus bakeri, which binds and blocks IL-33. Here, we find that the H. polygyrus bakeri genome contains three HpARI family members and that these have different effects on IL-33-dependent responses in vitro and in vivo, with HpARI1+2 suppressing and HpARI3 amplifying these responses. All HpARIs have sub-nanomolar affinity for mouse IL-33; however, HpARI3 does not block IL-33-ST2 interactions. Instead, HpARI3 stabilizes IL-33, increasing the half-life of the cytokine and amplifying responses to it in vivo. Together, these data show that H. polygyrus bakeri secretes a family of HpARI proteins with both overlapping and distinct functions, comprising a complex immunomodulatory arsenal of host-targeted proteins.


Assuntos
Nematospiroides dubius , Infecções por Strongylida , Camundongos , Animais , Interleucina-33/genética , Citocinas , Imunomodulação , Imunidade
7.
Proc Natl Acad Sci U S A ; 117(50): 32098-32104, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33257570

RESUMO

The deadly symptoms of malaria occur as Plasmodium parasites replicate within blood cells. Members of several variant surface protein families are expressed on infected blood cell surfaces. Of these, the largest and most ubiquitous are the Plasmodium-interspersed repeat (PIR) proteins, with more than 1,000 variants in some genomes. Their functions are mysterious, but differential pir gene expression associates with acute or chronic infection in a mouse malaria model. The membership of the PIR superfamily, and whether the family includes Plasmodium falciparum variant surface proteins, such as RIFINs and STEVORs, is controversial. Here we reveal the structure of the extracellular domain of a PIR from Plasmodium chabaudi We use structure-guided sequence analysis and molecular modeling to show that this fold is found across PIR proteins from mouse- and human-infective malaria parasites. Moreover, we show that RIFINs and STEVORs are not PIRs. This study provides a structure-guided definition of the PIRs and a molecular framework to understand their evolution.


Assuntos
Plasmodium chabaudi/ultraestrutura , Domínios Proteicos/imunologia , Proteínas de Protozoários/ultraestrutura , Sequências Repetitivas de Aminoácidos/imunologia , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Antígenos de Protozoários/ultraestrutura , Dicroísmo Circular , Genoma de Protozoário/genética , Humanos , Malária/imunologia , Malária/virologia , Proteínas de Membrana/genética , Proteínas de Membrana/imunologia , Proteínas de Membrana/ultraestrutura , Família Multigênica/genética , Família Multigênica/imunologia , Filogenia , Plasmodium chabaudi/genética , Plasmodium chabaudi/imunologia , Domínios Proteicos/genética , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Sequências Repetitivas de Aminoácidos/genética
8.
Proc Natl Acad Sci U S A ; 116(40): 20124-20134, 2019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31527263

RESUMO

A major determinant of pathogenicity in malaria caused by Plasmodium falciparum is the adhesion of parasite-infected erythrocytes to the vasculature or tissues of infected individuals. This occludes blood flow, leads to inflammation, and increases parasitemia by reducing spleen-mediated clearance of the parasite. This adhesion is mediated by PfEMP1, a multivariant family of around 60 proteins per parasite genome which interact with specific host receptors. One of the most common of these receptors is intracellular adhesion molecule-1 (ICAM-1), which is bound by 2 distinct groups of PfEMP1, A-type and B or C (BC)-type. Here, we present the structure of a domain from a B-type PfEMP1 bound to ICAM-1, revealing a complex binding site. Comparison with the existing structure of an A-type PfEMP1 bound to ICAM-1 shows that the 2 complexes share a globally similar architecture. However, while the A-type PfEMP1 bind ICAM-1 through a highly conserved binding surface, the BC-type PfEMP1 use a binding site that is more diverse in sequence, similar to how PfEMP1 interact with other human receptors. We also show that A- and BC-type PfEMP1 present ICAM-1 at different angles, perhaps influencing the ability of neighboring PfEMP1 domains to bind additional receptors. This illustrates the deep diversity of the PfEMP1 and demonstrates how variations in a single domain architecture can modulate binding to a specific ligand to control function and facilitate immune evasion.


Assuntos
Eritrócitos/metabolismo , Eritrócitos/parasitologia , Molécula 1 de Adesão Intercelular/química , Molécula 1 de Adesão Intercelular/metabolismo , Malária Falciparum/parasitologia , Plasmodium falciparum/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Sítios de Ligação , Adesão Celular , Humanos , Malária Falciparum/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Relação Estrutura-Atividade
9.
PLoS Pathog ; 15(6): e1007809, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31185066

RESUMO

Malaria is caused by Plasmodium parasites, which invade and replicate in erythrocytes. For Plasmodium falciparum, the major cause of severe malaria in humans, a heterotrimeric complex comprised of the secreted parasite proteins, PfCyRPA, PfRIPR and PfRH5 is essential for erythrocyte invasion, mediated by the interaction between PfRH5 and erythrocyte receptor basigin (BSG). However, whilst CyRPA and RIPR are present in most Plasmodium species, RH5 is found only in the small Laverania subgenus. Existence of a complex analogous to PfRH5-PfCyRPA-PfRIPR targeting BSG, and involvement of CyRPA and RIPR in invasion, however, has not been addressed in non-Laverania parasites. Here, we establish that unlike P. falciparum, P. knowlesi and P. vivax do not universally require BSG as a host cell invasion receptor. Although we show that both PkCyRPA and PkRIPR are essential for successful invasion of erythrocytes by P. knowlesi parasites in vitro, neither protein forms a complex with each other or with an RH5-like molecule. Instead, PkRIPR is part of a different trimeric protein complex whereas PkCyRPA appears to function without other parasite binding partners. It therefore appears that in the absence of RH5, outside of the Laverania subgenus, RIPR and CyRPA have different, independent functions crucial for parasite survival.


Assuntos
Basigina/metabolismo , Malária/metabolismo , Complexos Multiproteicos/metabolismo , Plasmodium knowlesi/metabolismo , Proteínas de Protozoários/metabolismo , Basigina/genética , Humanos , Malária/genética , Complexos Multiproteicos/genética , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium knowlesi/genética , Plasmodium vivax/genética , Plasmodium vivax/metabolismo , Proteínas de Protozoários/genética , Especificidade da Espécie
10.
Proteins ; 88(1): 187-195, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31325330

RESUMO

Many human pathogens use host cell-surface receptors to attach and invade cells. Often, the host-pathogen interaction affinity is low, presenting opportunities to block invasion using a soluble, high-affinity mimic of the host protein. The Plasmodium falciparum reticulocyte-binding protein homolog 5 (RH5) provides an exciting candidate for mimicry: it is highly conserved and its moderate affinity binding to the human receptor basigin (KD ≥1 µM) is an essential step in erythrocyte invasion by this malaria parasite. We used deep mutational scanning of a soluble fragment of human basigin to systematically characterize point mutations that enhance basigin affinity for RH5 and then used Rosetta to design a variant within the sequence space of affinity-enhancing mutations. The resulting seven-mutation design exhibited 1900-fold higher affinity (KD approximately 1 nM) for RH5 with a very slow binding off rate (0.23 h-1 ) and reduced the effective Plasmodium growth-inhibitory concentration by at least 10-fold compared to human basigin. The design provides a favorable starting point for engineering on-rate improvements that are likely to be essential to reach therapeutically effective growth inhibition.


Assuntos
Basigina/farmacologia , Proteínas de Transporte/genética , Malária Falciparum/tratamento farmacológico , Eritrócitos/efeitos dos fármacos , Humanos , Malária Falciparum/genética , Malária Falciparum/parasitologia , Modelos Moleculares , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/patogenicidade , Ligação Proteica/efeitos dos fármacos , Proteínas de Protozoários/genética
11.
Nature ; 515(7527): 427-30, 2014 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-25132548

RESUMO

Invasion of host erythrocytes is essential to the life cycle of Plasmodium parasites and development of the pathology of malaria. The stages of erythrocyte invasion, including initial contact, apical reorientation, junction formation, and active invagination, are directed by coordinated release of specialized apical organelles and their parasite protein contents. Among these proteins, and central to invasion by all species, are two parasite protein families, the reticulocyte-binding protein homologue (RH) and erythrocyte-binding like proteins, which mediate host-parasite interactions. RH5 from Plasmodium falciparum (PfRH5) is the only member of either family demonstrated to be necessary for erythrocyte invasion in all tested strains, through its interaction with the erythrocyte surface protein basigin (also known as CD147 and EMMPRIN). Antibodies targeting PfRH5 or basigin efficiently block parasite invasion in vitro, making PfRH5 an excellent vaccine candidate. Here we present crystal structures of PfRH5 in complex with basigin and two distinct inhibitory antibodies. PfRH5 adopts a novel fold in which two three-helical bundles come together in a kite-like architecture, presenting binding sites for basigin and inhibitory antibodies at one tip. This provides the first structural insight into erythrocyte binding by the Plasmodium RH protein family and identifies novel inhibitory epitopes to guide design of a new generation of vaccines against the blood-stage parasite.


Assuntos
Anticorpos Bloqueadores/química , Basigina/química , Eritrócitos/química , Malária , Plasmodium falciparum/química , Anticorpos Bloqueadores/imunologia , Antígenos de Protozoários/química , Antígenos de Protozoários/imunologia , Basigina/imunologia , Sítios de Ligação , Cristalografia por Raios X , Epitopos/química , Epitopos/imunologia , Interações Hospedeiro-Parasita/imunologia , Humanos , Malária/parasitologia , Modelos Moleculares , Plasmodium falciparum/imunologia , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia
12.
Proc Natl Acad Sci U S A ; 114(5): 998-1002, 2017 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-28096331

RESUMO

Many promising vaccine candidates from pathogenic viruses, bacteria, and parasites are unstable and cannot be produced cheaply for clinical use. For instance, Plasmodium falciparum reticulocyte-binding protein homolog 5 (PfRH5) is essential for erythrocyte invasion, is highly conserved among field isolates, and elicits antibodies that neutralize in vitro and protect in an animal model, making it a leading malaria vaccine candidate. However, functional RH5 is only expressible in eukaryotic systems and exhibits moderate temperature tolerance, limiting its usefulness in hot and low-income countries where malaria prevails. Current approaches to immunogen stabilization involve iterative application of rational or semirational design, random mutagenesis, and biochemical characterization. Typically, each round of optimization yields minor improvement in stability, and multiple rounds are required. In contrast, we developed a one-step design strategy using phylogenetic analysis and Rosetta atomistic calculations to design PfRH5 variants with improved packing and surface polarity. To demonstrate the robustness of this approach, we tested three PfRH5 designs, all of which showed improved stability relative to wild type. The best, bearing 18 mutations relative to PfRH5, expressed in a folded form in bacteria at >1 mg of protein per L of culture, and had 10-15 °C higher thermal tolerance than wild type, while also retaining ligand binding and immunogenic properties indistinguishable from wild type, proving its value as an immunogen for a future generation of vaccines against the malaria blood stage. We envision that this efficient computational stability design methodology will also be used to enhance the biophysical properties of other recalcitrant vaccine candidates from emerging pathogens.


Assuntos
Antígenos de Protozoários/química , Proteínas de Transporte/química , Vacinas Antimaláricas/imunologia , Plasmodium falciparum/química , Engenharia de Proteínas/métodos , Algoritmos , Substituição de Aminoácidos , Animais , Anticorpos Antiprotozoários/biossíntese , Antígenos de Protozoários/genética , Antígenos de Protozoários/imunologia , Basigina/metabolismo , Proteínas de Transporte/genética , Proteínas de Transporte/imunologia , Clonagem Molecular , Biologia Computacional/métodos , Desenho de Fármacos , Temperatura Alta , Imunogenicidade da Vacina , Camundongos , Camundongos Endogâmicos BALB C , Mutagênese Sítio-Dirigida , Plasmodium falciparum/genética , Plasmodium falciparum/imunologia , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Alinhamento de Sequência , Vacinas de Subunidades Antigênicas/imunologia
13.
PLoS Pathog ; 13(1): e1006055, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28125726

RESUMO

African trypanosomes have complex life cycles comprising at least ten developmental forms, variously adapted to different niches in their tsetse fly vector and their mammalian hosts. Unlike many other protozoan pathogens, they are always extracellular and have evolved intricate surface coats that allow them to obtain nutrients while also protecting them from the immune defenses of either insects or mammals. The acquisition of macromolecular nutrients requires receptors that function within the context of these surface coats. The best understood of these is the haptoglobin-hemoglobin receptor (HpHbR) of Trypanosoma brucei, which is used by the mammalian bloodstream form of the parasite, allowing heme acquisition. However, in some primates it also provides an uptake route for trypanolytic factor-1, a mediator of innate immunity against trypanosome infection. Recent studies have shown that during the evolution of African trypanosome species the receptor has diversified in function from a hemoglobin receptor predominantly expressed in the tsetse fly to a haptoglobin-hemoglobin receptor predominantly expressed in the mammalian bloodstream. Structural and functional studies of homologous receptors from different trypanosome species have allowed us to propose an evolutionary history for how one receptor has adapted to different roles in different trypanosome species. They also highlight the challenges that a receptor faces in operating on the complex trypanosome surface and show how these challenges can be met.


Assuntos
Imunidade Inata , Proteínas de Protozoários/genética , Receptores de Superfície Celular/genética , Trypanosoma brucei brucei/imunologia , Tripanossomíase Africana/imunologia , Moscas Tsé-Tsé/parasitologia , Animais , Evolução Biológica , Humanos , Estágios do Ciclo de Vida , Modelos Moleculares , Primatas , Proteínas de Protozoários/química , Proteínas de Protozoários/imunologia , Proteínas de Protozoários/metabolismo , Receptores de Superfície Celular/química , Receptores de Superfície Celular/imunologia , Receptores de Superfície Celular/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Tripanossomíase Africana/parasitologia
14.
Nature ; 498(7455): 502-5, 2013 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-23739325

RESUMO

Sequestration of Plasmodium falciparum-infected erythrocytes in host blood vessels is a key triggering event in the pathogenesis of severe childhood malaria, which is responsible for about one million deaths every year. Sequestration is mediated by specific interactions between members of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family and receptors on the endothelial lining. Severe childhood malaria is associated with expression of specific PfEMP1 subtypes containing domain cassettes (DCs) 8 and 13 (ref. 3), but the endothelial receptor for parasites expressing these proteins was unknown. Here we identify endothelial protein C receptor (EPCR), which mediates the cytoprotective effects of activated protein C, as the endothelial receptor for DC8 and DC13 PfEMP1. We show that EPCR binding is mediated through the amino-terminal cysteine-rich interdomain region (CIDRα1) of DC8 and group A PfEMP1 subfamilies, and that CIDRα1 interferes with protein C binding to EPCR. This PfEMP1 adhesive property links P. falciparum cytoadhesion to a host receptor involved in anticoagulation and endothelial cytoprotective pathways, and has implications for understanding malaria pathology and the development of new malaria interventions.


Assuntos
Antígenos CD/metabolismo , Malária Falciparum/patologia , Malária Falciparum/parasitologia , Plasmodium falciparum/metabolismo , Receptores de Superfície Celular/metabolismo , Animais , Coagulação Sanguínea , Encéfalo/irrigação sanguínea , Células CHO , Adesão Celular , Linhagem Celular , Cricetinae , Células Endoteliais/metabolismo , Receptor de Proteína C Endotelial , Membrana Eritrocítica/metabolismo , Humanos , Inflamação/complicações , Inflamação/parasitologia , Inflamação/patologia , Malária Falciparum/complicações , Microcirculação , Plasmodium falciparum/química , Plasmodium falciparum/patogenicidade , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo
15.
J Immunol ; 195(7): 3273-83, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26320251

RESUMO

The virulence of Plasmodium falciparum is linked to the ability of infected erythrocytes (IE) to adhere to the vascular endothelium, mediated by P. falciparum erythrocyte membrane protein 1 (PfEMP1). In this article, we report the functional characterization of an mAb that recognizes a panel of PfEMP1s and inhibits ICAM-1 binding. The 24E9 mouse mAb was raised against PFD1235w DBLß3_D4, a domain from the group A PfEMP1s associated with severe malaria. 24E9 recognizes native PfEMP1 expressed on the IE surface and shows cross-reactivity with and cross-inhibition of the ICAM-1 binding capacity of domain cassette 4 PfEMP1s. 24E9 Fab fragments bind DBLß3_D4 with nanomolar affinity and inhibit ICAM-1 binding of domain cassette 4-expressing IE. The antigenic regions targeted by 24E9 Fab were identified by hydrogen/deuterium exchange mass spectrometry and revealed three discrete peptides that are solvent protected in the complex. When mapped onto a homology model of DBLß3_D4, these cluster to a defined, surface-exposed region on the convex surface of DBLß3_D4. Mutagenesis confirmed that the site most strongly protected is necessary for 24E9 binding, which is consistent with a low-resolution structure of the DBLß3_D4::24E9 Fab complex derived from small-angle x-ray scattering. The convex surface of DBLß3_D4 has previously been shown to contain the ICAM-1 binding site of DBLß domains, suggesting that the mAb acts by occluding the ICAM-1 binding surface. Conserved epitopes, such as those targeted by 24E9, are promising candidates for the inclusion in a vaccine interfering with ICAM-1-specific adhesion of group A PfEMP1 expressed by P. falciparum IE during severe malaria.


Assuntos
Anticorpos Monoclonais/imunologia , Sítios de Ligação de Anticorpos/imunologia , Molécula 1 de Adesão Intercelular/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/imunologia , Animais , Anticorpos Antiprotozoários/imunologia , Antígenos de Protozoários/imunologia , Adesão Celular , Células Cultivadas , Endotélio Vascular/metabolismo , Endotélio Vascular/parasitologia , Epitopos/imunologia , Membrana Eritrocítica/imunologia , Eritrócitos/parasitologia , Hibridomas , Malária Falciparum/imunologia , Malária Falciparum/parasitologia , Camundongos , Dados de Sequência Molecular , Estrutura Terciária de Proteína
16.
Proc Natl Acad Sci U S A ; 111(20): E2130-9, 2014 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-24808134

RESUMO

ApolipoproteinL1 (APOL1) protects humans and some primates against several African trypanosomes. APOL1 genetic variants strongly associated with kidney disease in African Americans have additional trypanolytic activity against Trypanosoma brucei rhodesiense, the cause of acute African sleeping sickness. We combined genetic, physiological, and biochemical studies to explore coevolution between the APOL1 gene and trypanosomes. We analyzed the APOL1 sequence in modern and archaic humans and baboons along with geographic distribution in present day Africa to understand how the kidney risk variants evolved. Then, we tested Old World monkey, human, and engineered APOL1 variants for their ability to kill human infective trypanosomes in vivo to identify the molecular mechanism whereby human trypanolytic APOL1 variants evade T. brucei rhodesiense virulence factor serum resistance-associated protein (SRA). For one APOL1 kidney risk variant, a two-residue deletion of amino acids 388 and 389 causes a shift in a single lysine residue that mimics the Old World monkey sequence, which augments trypanolytic activity by preventing SRA binding. A second human APOL1 kidney risk allele, with an amino acid substitution that also restores sequence alignment with Old World monkeys, protected against T. brucei rhodesiense due in part to reduced SRA binding. Both APOL1 risk variants induced tissue injury in murine livers, the site of transgenic gene expression. Our study shows that both genetic variants of human APOL1 that protect against T. brucei rhodesiense have recapitulated molecular signatures found in Old World monkeys and raises the possibility that APOL1 variants have broader innate immune activity that extends beyond trypanosomes.


Assuntos
Apolipoproteínas/genética , Evolução Biológica , Resistência à Doença/genética , Lipoproteínas HDL/genética , Tripanossomíase Africana/genética , África , Alelos , Animais , Apolipoproteína L1 , Apolipoproteínas/fisiologia , Frequência do Gene , Geografia , Haplótipos , Humanos , Lipoproteínas HDL/fisiologia , Lisina/genética , Mandrillus , Camundongos , Camundongos Transgênicos , Modelos Teóricos , Papio/genética , Polimorfismo Genético , Trypanosoma brucei rhodesiense
17.
Proc Natl Acad Sci U S A ; 110(5): 1905-10, 2013 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-23319650

RESUMO

African trypanosomes are protected by a densely packed surface monolayer of variant surface glycoprotein (VSG). A haptoglobin-hemoglobin receptor (HpHbR) within this VSG coat mediates heme acquisition. HpHbR is also exploited by the human host to mediate endocytosis of trypanolytic factor (TLF)1 from serum, contributing to innate immunity. Here, the crystal structure of HpHbR from Trypanosoma congolense has been solved, revealing an elongated three α-helical bundle with a small membrane distal head. To understand the receptor in the context of the VSG layer, the dimensions of Trypanosoma brucei HpHbR and VSG have been determined by small-angle X-ray scattering, revealing the receptor to be more elongated than VSG. It is, therefore, likely that the receptor protrudes above the VSG layer and unlikely that the VSG coat can prevent immunoglobulin binding to the receptor. The HpHb-binding site has been mapped by single-residue mutagenesis and surface plasmon resonance. This site is located where it is readily accessible above the VSG layer. A single HbHpR polymorphism unique to human infective T. brucei gambiense has been shown to be sufficient to reduce binding of both HpHb and TLF1, modulating ligand affinity in a delicate balancing act that allows nutrient acquisition but avoids TLF1 uptake.


Assuntos
Endocitose/imunologia , Imunidade Inata/imunologia , Receptores de Superfície Celular/imunologia , Glicoproteínas Variantes de Superfície de Trypanosoma/imunologia , Sequência de Aminoácidos , Animais , Sítios de Ligação/genética , Interações Hospedeiro-Parasita/imunologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Espalhamento a Baixo Ângulo , Homologia de Sequência de Aminoácidos , Ressonância de Plasmônio de Superfície , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/imunologia , Trypanosoma brucei brucei/fisiologia , Trypanosoma brucei gambiense/genética , Trypanosoma brucei gambiense/imunologia , Trypanosoma brucei gambiense/fisiologia , Trypanosoma congolense/genética , Trypanosoma congolense/imunologia , Trypanosoma congolense/fisiologia , Tripanossomíase Africana/imunologia , Tripanossomíase Africana/parasitologia , Glicoproteínas Variantes de Superfície de Trypanosoma/química , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Difração de Raios X
18.
J Biol Chem ; 289(20): 13876-89, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24668806

RESUMO

Endoglycosidase S (EndoS) is a glycoside-hydrolase secreted by the bacterium Streptococcus pyogenes. EndoS preferentially hydrolyzes the N-linked glycans from the Fc region of IgG during infection. This hydrolysis impedes Fc functionality and contributes to the immune evasion strategy of S. pyogenes. Here, we investigate the mechanism of human serum IgG deactivation by EndoS. We expressed fragments of IgG1 and demonstrated that EndoS was catalytically active against all of them including the isolated CH2 domain of the Fc domain. Similarly, we sought to investigate which domains within EndoS could contribute to activity. Bioinformatics analysis of the domain organization of EndoS confirmed the previous predictions of a chitinase domain and leucine-rich repeat but also revealed a putative carbohydrate binding module (CBM) followed by a C-terminal region. Using expressed fragments of EndoS, circular dichroism of the isolated CBM, and a CBM-C-terminal region fusion revealed folded domains dominated by ß sheet and α helical structure, respectively. Nuclear magnetic resonance analysis of the CBM with monosaccharides was suggestive of carbohydrate binding functionality. Functional analysis of truncations of EndoS revealed that, whereas the C-terminal of EndoS is dispensable for activity, its deletion impedes the hydrolysis of IgG glycans.


Assuntos
Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Fragmentos de Imunoglobulinas/metabolismo , Imunoglobulina G/química , Imunoglobulina G/metabolismo , Streptococcus pyogenes/enzimologia , Glicosídeo Hidrolases/genética , Glicosilação , Células HEK293 , Humanos , Fragmentos de Imunoglobulinas/química , Modelos Moleculares , Polissacarídeos/metabolismo , Estrutura Terciária de Proteína , Deleção de Sequência
19.
J Immunol ; 190(1): 240-9, 2013 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-23209327

RESUMO

Cerebral Plasmodium falciparum malaria is characterized by adhesion of infected erythrocytes (IEs) to the cerebral microvasculature. This has been linked to parasites expressing the structurally related group A subset of the P. falciparum erythrocyte membrane protein 1 (PfEMP1) family of IE adhesion ligands and to IEs with affinity for ICAM-1. However, recent evidence has cast doubt on both these associations, tempering hopes of the feasibility of developing a vaccine based on ICAM-1-binding PfEMP1. In this study, we report the identification of a domain cassette (DC) present in group A var genes from six genetically distinct P. falciparum parasites. The three domains in the cassette, which we call DC4, had a high level of sequence identity and cluster together phylogenetically. Erythrocytes infected by these parasites and selected in vitro for expression of DC4 adhered specifically to ICAM-1. The ICAM-1-binding capacity of DC4 was mapped to the C-terminal third of its Duffy-binding-like ß3 domain. DC4 was the target of broadly cross-reactive and adhesion-inhibitory IgG Abs, and levels of DC4-specific and adhesion-inhibitory IgG increased with age among P. falciparum-exposed children. Our study challenges earlier conclusions that group A PfEMP1 proteins are not central to ICAM-1-specific IE adhesion and support the feasibility of developing a vaccine preventing cerebral malaria by inhibiting cerebral IE sequestration.


Assuntos
Anticorpos Bloqueadores/metabolismo , Antígenos de Protozoários/metabolismo , Membrana Eritrocítica/metabolismo , Molécula 1 de Adesão Intercelular/metabolismo , Mutagênese Insercional/imunologia , Plasmodium falciparum/imunologia , Proteínas de Protozoários/metabolismo , Animais , Anticorpos Bloqueadores/genética , Antígenos de Protozoários/classificação , Antígenos de Protozoários/genética , Sítios de Ligação de Anticorpos/genética , Adesão Celular/genética , Adesão Celular/imunologia , Sequência Conservada/genética , Sequência Conservada/imunologia , Reações Cruzadas/imunologia , Membrana Eritrocítica/genética , Membrana Eritrocítica/imunologia , Genômica/métodos , Células HEK293 , Humanos , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/imunologia , Mutagênese Insercional/genética , Plasmodium falciparum/genética , Ligação Proteica/genética , Ligação Proteica/imunologia , Estrutura Terciária de Proteína/genética , Proteínas de Protozoários/classificação , Proteínas de Protozoários/genética , Ratos
20.
J Biol Chem ; 288(8): 5992-6003, 2013 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-23297413

RESUMO

The adhesion of Plasmodium falciparum-infected erythrocytes to human tissues or endothelium is central to the pathology caused by the parasite during malaria. It contributes to the avoidance of parasite clearance by the spleen and to the specific pathologies of cerebral and placental malaria. The PfEMP1 family of adhesive proteins is responsible for this sequestration by mediating interactions with diverse human ligands. In addition, as the primary targets of acquired, protective immunity, the PfEMP1s are potential vaccine candidates. PfEMP1s contain large extracellular ectodomains made from CIDR (cysteine-rich interdomain regions) and DBL (Duffy-binding-like) domains and show extensive variation in sequence, size, and domain organization. Here we use biophysical methods to characterize the entire ∼300-kDa ectodomain from IT4VAR13, a protein that interacts with the host receptor, intercellular adhesion molecule-1 (ICAM-1). We show through small angle x-ray scattering that IT4VAR13 is rigid, elongated, and monomeric. We also show that it interacts with ICAM-1 through the DBLß domain alone, forming a 1:1 complex. These studies provide a first low resolution structural view of a PfEMP1 ectodomain in complex with its ligand. They show that it combines a modular domain arrangement consisting of individual ligand binding domains, with a defined higher order architecture that exposes the ICAM-1 binding surface to allow adhesion.


Assuntos
Molécula 1 de Adesão Intercelular/metabolismo , Malária/parasitologia , Plasmodium falciparum/metabolismo , Animais , Sítios de Ligação , Biofísica/métodos , Adesão Celular , Dicroísmo Circular , Eritrócitos/parasitologia , Temperatura Alta , Humanos , Cinética , Ligantes , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas de Protozoários/química , Espalhamento de Radiação , Ressonância de Plasmônio de Superfície , Temperatura , Ultracentrifugação , Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA