Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Environ Sci Technol ; 56(24): 17805-17814, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36445296

RESUMO

The performance of chemical safety assessment within the domain of environmental toxicology is often impeded by a shortfall of appropriate experimental data describing potential hazards across the many compounds in regular industrial use. In silico schemes for assigning aquatic-relevant modes or mechanisms of toxic action to substances, based solely on consideration of chemical structure, have seen widespread employment─including those of Verhaar, Russom, and later Bauer (MechoA). Recently, development of a further system was reported by Sapounidou, which, in common with MechoA, seeks to ground its classifications in understanding and appreciation of molecular initiating events. Until now, this Sapounidou scheme has not seen implementation as a tool for practical screening use. Accordingly, the primary purpose of this study was to create such a resource─in the form of a computational workflow. This exercise was facilitated through the formulation of 183 structural alerts/rules describing molecular features associated with narcosis, chemical reactivity, and specific mechanisms of action. Output was subsequently compared relative to that of the three aforementioned alternative systems to identify strengths and shortcomings as regards coverage of chemical space.


Assuntos
Ecotoxicologia , Substâncias Perigosas , Substâncias Perigosas/toxicidade , Relação Quantitativa Estrutura-Atividade
2.
Regul Toxicol Pharmacol ; 135: 105249, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36041585

RESUMO

Structure-activity relationships (SARs) in toxicology have enabled the formation of structural rules which, when coded as structural alerts, are essential tools in in silico toxicology. Whilst other in silico methods have approaches for their evaluation, there is no formal process to assess the confidence that may be associated with a structural alert. This investigation proposes twelve criteria to assess the uncertainty associated with structural alerts, allowing for an assessment of confidence. The criteria are based around the stated purpose, description of the chemistry, toxicology and mechanism, performance and coverage, as well as corroborating and supporting evidence of the alert. Alerts can be given a confidence assessment and score, enabling the identification of areas where more information may be beneficial. The scheme to evaluate structural alerts was placed in the context of various use cases for industrial and regulatory applications. The analysis of alerts, and consideration of the evaluation scheme, identifies the different characteristics an alert may have, such as being highly specific or generic. These characteristics may determine when an alert can be used for specific uses such as identification of analogues for read-across or hazard identification.


Assuntos
Incerteza , Relação Estrutura-Atividade
3.
Environ Sci Technol ; 55(3): 1897-1907, 2021 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-33478211

RESUMO

This study developed a novel classification scheme to assign chemicals to a verifiable mechanism of (eco-)toxicological action to allow for grouping, read-across, and in silico model generation. The new classification scheme unifies and extends existing schemes and has, at its heart, direct reference to molecular initiating events (MIEs) promoting adverse outcomes. The scheme is based on three broad domains of toxic action representing nonspecific toxicity (e.g., narcosis), reactive mechanisms (e.g., electrophilicity and free radical action), and specific mechanisms (e.g., associated with enzyme inhibition). The scheme is organized at three further levels of detail beyond broad domains to separate out the mechanistic group, specific mechanism, and the MIEs responsible. The novelty of this approach comes from the reference to taxonomic diversity within the classification, transparency, quality of supporting evidence relating to MIEs, and that it can be updated readily.

4.
Sci Total Environ ; 912: 168573, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37981146

RESUMO

The ability to predict which chemicals are of concern for environmental safety is dependent, in part, on the ability to extrapolate chemical effects across many species. This work investigated the complementary use of two computational new approach methodologies to support cross-species predictions of chemical susceptibility: the US Environmental Protection Agency Sequence Alignment to Predict Across Species Susceptibility (SeqAPASS) tool and Unilever's recently developed Genes to Pathways - Species Conservation Analysis (G2P-SCAN) tool. These stand-alone tools rely on existing biological knowledge to help understand chemical susceptibility and biological pathway conservation across species. The utility and challenges of these combined computational approaches were demonstrated using case examples focused on chemical interactions with peroxisome proliferator activated receptor alpha (PPARα), estrogen receptor 1 (ESR1), and gamma-aminobutyric acid type A receptor subunit alpha (GABRA1). Overall, the biological pathway information enhanced the weight of evidence to support cross-species susceptibility predictions. Through comparisons of relevant molecular and functional data gleaned from adverse outcome pathways (AOPs) to mapped biological pathways, it was possible to gain a toxicological context for various chemical-protein interactions. The information gained through this computational approach could ultimately inform chemical safety assessments by enhancing cross-species predictions of chemical susceptibility. It could also help fulfill a core objective of the AOP framework by potentially expanding the biologically plausible taxonomic domain of applicability of relevant AOPs.


Assuntos
Rotas de Resultados Adversos , Medição de Risco/métodos , Alinhamento de Sequência
5.
Chemosphere ; 346: 140529, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37914048

RESUMO

In this study water and sediment samples, collected from the River Nene (Northamptonshire) at several sites in the vicinity of the Great Billing sewage treatment plant (STP), were analysed for triethanolamine quaternary compounds (TEAQ, ester quats). A method was developed using liquid chromatography tandem mass spectrometry (LC/MS/MS) with a electrospray ionisation source (ESI). Ten components were determined using a characterised commercial sample of Tallow TEAQ as a standard. To our knowledge this is the first time environmental concentrations of a wide spectrum of individual homologues of TEAQ have been reliably quantified covering a broad range of environmental matrices (STP influent, STP effluent, surface waters and sediments), due to the challenging nature of the analytical method. The method featured novel solutions for the determination of long and multiple chain length alkyl quats, controlling loss processes, background contamination and chromatographic performance. TEAQ compounds were found to be highly removed in the sewage treatment plant resulting in low effluent concentrations. Low concentrations in both river water and sediment samples were found also. In many cases levels were below the Method Detection Limit (MDL). In river water samples, mean values of TEAQ compounds found were 210-398 ng/L for C16:0/C18:0 TEAQ diester and 126-287 ng/L for C18:0/C18:0 TEAQ diester. River sediment was found to contain mean TEAQ levels of 7.07-12.5, 19.7 to 40.3 and 7.04-35.1 µg/kg dry weight for C16:0/C16:0, C16:0/C18:0, and C18:0/C18:0 TEAQ, respectively. At Great Billing STP monoesters and diesters of TEAQ were shown to be efficiently removed (>97 and 99 %, respectively), although limited samples were taken on this occasion.


Assuntos
Espectrometria de Massas em Tandem , Poluentes Químicos da Água , Espectrometria de Massas em Tandem/métodos , Compostos de Amônio Quaternário/análise , Esgotos/química , Poluentes Químicos da Água/análise , Cromatografia Líquida/métodos , Água/química , Monitoramento Ambiental
6.
Environ Toxicol Chem ; 42(5): 1152-1166, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36861224

RESUMO

The last two decades have witnessed a strong momentum toward integration of cell-based and computational approaches in safety assessments. This is fueling a global regulatory paradigm shift toward reduction and replacement of the use of animals in toxicity tests while promoting the use of new approach methodologies. The understanding of conservation of molecular targets and pathways provides an opportunity to extrapolate effects across species and ultimately to determine the taxonomic applicability domain of assays and biological effects. Despite the wealth of genome-linked data available, there is a compelling need for improved accessibility, while ensuring that it reflects the underpinning biology. We present the novel pipeline Genes-to-Pathways Species Conservation Analysis (G2P-SCAN) to further support understanding on cross-species extrapolation of biological processes. This R package extracts, synthetizes, and structures the data available from different databases, that is, gene orthologs, protein families, entities, and reactions, linked to human genes and respective pathways across six relevant model species. The use of G2P-SCAN enables the overall analysis of orthology and functional families to substantiate the identification of conservation and susceptibility at the pathway level. In the present study we discuss five case studies, demonstrating the validity of the developed pipeline and its potential use as species extrapolation support. We foresee this pipeline will provide valuable biological insights and create space for the use of mechanistically based data to inform potential species susceptibility for research and safety decision purposes. Environ Toxicol Chem 2023;42:1152-1166. © 2023 UNILEVER GLOBAL IP LTD. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.


Assuntos
Ecotoxicologia , Testes de Toxicidade , Animais , Humanos , Medição de Risco/métodos , Ecotoxicologia/métodos
7.
Environ Sci Process Impacts ; 25(6): 1082-1093, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37158124

RESUMO

Membrane-water partitioning is an important physical property for the assessment of bioaccumulation and environmental impact. Here, we advance simulation methodology for predicting the partitioning of small molecules into lipid membranes and compare the computational predictions to experimental measurements in liposomes. As a step towards high-throughput screening, we present an automated mapping and parametrization procedure to produce coarse-grained models compatible with the Martini 3 force field. The methodology is general and can also be used for other applications where coarse-grained simulations are appropriate. This article addresses the effect on membrane-water partitioning of adding cholesterol to POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine) membranes. Nine contrasting neutral, zwitterionic and charged solutes are tested. Agreement between experiment and simulation is generally good, with the most challenging cases being permanently charged solutes. For all solutes, partitioning is found to be insensitive to membrane cholesterol concentration up to 25% mole fraction. Hence, for assessment of bioaccumulation into a range of membranes (such as those found in fish), partitioning data measured in pure lipid membranes are still informative.


Assuntos
Bicamadas Lipídicas , Lipossomos , Animais , Bioacumulação , Fosfatidilcolinas , Colesterol , Água , Simulação de Dinâmica Molecular
8.
Environ Sci Process Impacts ; 25(3): 621-647, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36779707

RESUMO

The risk assessment of thousands of chemicals used in our society benefits from adequate grouping of chemicals based on the mode and mechanism of toxic action (MoA). We measure the phospholipid membrane-water distribution ratio (DMLW) using a chromatographic assay (IAM-HPLC) for 121 neutral and ionized organic chemicals and screen other methods to derive DMLW. We use IAM-HPLC based DMLW as a chemical property to distinguish between baseline narcosis and specific MoA, for reported acute toxicity endpoints on two separate sets of chemicals. The first set comprised 94 chemicals of US EPA's acute fish toxicity database: 47 categorized as narcosis MoA, 27 with specific MoA, and 20 predominantly ionic chemicals with mostly unknown MoA. The narcosis MoA chemicals clustered around the median narcosis critical membrane burden (CMBnarc) of 140 mmol kg-1 lipid, with a lower limit of 14 mmol kg-1 lipid, including all chemicals labelled Narcosis_I and Narcosis_II. This maximum 'toxic ratio' (TR) between CMBnarc and the lower limit narcosis endpoint is thus 10. For 23/28 specific MoA chemicals a TR >10 was derived, indicative of a specific adverse effect pathway related to acute toxicity. For 10/12 cations categorized as "unsure amines", the TR <10 suggests that these affect fish via narcosis MoA. The second set comprised 29 herbicides, including 17 dissociated acids, and evaluated the TR for acute toxic effect concentrations to likely sensitive aquatic plant species (green algae and macrophytes Lemna and Myriophyllum), and non-target animal species (invertebrates and fish). For 21/29 herbicides, a TR >10 indicated a specific toxic mode of action other than narcosis for at least one of these aquatic primary producers. Fish and invertebrate TRs were mostly <10, particularly for neutral herbicides, but for acidic herbicides a TR >10 indicated specific adverse effects in non-target animals. The established critical membrane approach to derive the TR provides for useful contribution to the weight of evidence to bin a chemical as having a narcosis MoA or less likely to have acute toxicity caused by a more specific adverse effect pathway. After proper calibration, the chromatographic assay provides consistent and efficient experimental input for both neutral and ionizable chemicals to this approach.


Assuntos
Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Herbicidas , Estupor , Poluentes Químicos da Água , Animais , Água , Invertebrados , Peixes , Herbicidas/toxicidade , Lipídeos , Poluentes Químicos da Água/toxicidade
9.
Sci Total Environ ; 849: 157666, 2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-35908689

RESUMO

With the large numbers of man-made chemicals produced and released in the environment, there is a need to provide assessments on their potential effects on environmental safety and human health. Current regulatory frameworks rely on a mix of both hazard and risk-based approaches to make safety decisions, but the large number of chemicals in commerce combined with an increased need to conduct assessments in the absence of animal testing makes this increasingly challenging. This challenge is catalysing the use of more mechanistic knowledge in safety assessment from both in silico and in vitro approaches in the hope that this will increase confidence in being able to identify modes of action (MoA) for the chemicals in question. Here we approach this challenge by testing whether a functional genomics approach in C. elegans and in a fish cell line can identify molecular mechanisms underlying the effects of narcotics, and the effects of more specific acting toxicants. We show that narcosis affects the expression of neuronal genes associated with CNS function in C. elegans and in a fish cell line. Overall, we believe that our study provides an important step in developing mechanistically relevant biomarkers which can be used to screen for hazards, and which prevent the need for repeated animal or cross-species comparisons for each new chemical.


Assuntos
Caenorhabditis elegans , Estupor , Animais , Biomarcadores , Caenorhabditis elegans/genética , Linhagem Celular , Peixes/fisiologia , Brânquias , Humanos , Entorpecentes , Medição de Risco
10.
Environ Sci Technol ; 45(4): 1466-72, 2011 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-21268630

RESUMO

The environmental distribution and fate of microplastic in the marine environment represents a potential cause of concern. One aspect is the influence that microplastic may have on enhancing the transport and bioavailability of persistent, bioaccumulative, and toxic substances (PBT). In this study we assess these potential risks using a thermodynamic approach, aiming to prioritize the physicochemical properties of chemicals that are most likely absorbed by microplastic and therefore ingested by biota. Using a multimedia modeling approach, we define a chemical space aimed at improving our understanding of how chemicals partition in the marine environment with varying volume ratios of air/water/organic carbon/polyethylene, where polyethylene represents a main group of microplastic. Results suggest that chemicals with log KOW > 5 have the potential to partition >1% to polyethylene. Food-web model results suggest that reductions in body burden concentrations for nonpolar organic chemicals are likely to occur for chemicals with log KOW between 5.5 and 6.5. Thus the relative importance of microplastic as a vector of PBT substances to biological organisms is likely of limited importance, relative to other exposure pathways. Nevertheless, a number of data-gaps are identified, largely associated with improving our understanding of the physical fate of microplastic in the environment.


Assuntos
Modelos Teóricos , Nanoestruturas/química , Compostos Orgânicos/química , Plásticos/química , Absorção , Exposição Ambiental , Cadeia Alimentar , Água do Mar , Termodinâmica
11.
Environ Sci Process Impacts ; 23(12): 1930-1948, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34787154

RESUMO

Fish bioconcentration factors (BCFs) are commonly used in chemical hazard and risk assessment. For neutral organic chemicals BCFs are positively correlated with the octanol-water partition ratio (KOW), but KOW is not a reliable parameter for surfactants. Membrane lipid-water distribution ratios (DMLW) can be accurately measured for all kinds of surfactants, using phospholipid-based sorbents. This study first demonstrates that DMLW values for ionic surfactants are more than 100 000 times higher than the partition ratio to fish-oil, representing neutral storage lipid. A non-ionic alcohol ethoxylate surfactant showed almost equal affinity for both lipid types. Accordingly, a baseline screening BCF value for surfactants (BCFbaseline) can be approximated for ionic surfactants by multiplying DMLW by the phospholipid fraction in tissue, and for non-ionic surfactants by multiplying DMLW by the total lipid fraction. We measured DMLW values for surfactant structures, including linear and branched alkylbenzenesulfonates, an alkylsulfoacetate and an alkylethersulfate, bis(2-ethylhexyl)-surfactants (e.g., docusate), zwitterionic alkylbetaines and alkylamine-oxides, and a polyprotic diamine. Together with sixty previously published DMLW values for surfactants, structure-activity relationships were derived to elucidate the influence of surfactant specific molecular features on DMLW. For 23 surfactant types, we established the alkyl chain length at which BCFbaseline would exceed the EU REACH bioaccumulation (B) threshold of 2000 L kg-1, and would therefore require higher tier assessments to further refine the BCF estimate. Finally, the derived BCFbaseline are compared with measured literature in vivo BCF data where available, suggesting that refinements, most notably reliable estimates of biotransformation rates, are needed for most surfactant types.


Assuntos
Tensoativos , Poluentes Químicos da Água , Animais , Bioacumulação , Peixes , Fosfolipídeos , Poluentes Químicos da Água/análise
12.
Toxicol In Vitro ; 62: 104692, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31669395

RESUMO

There is a growing recognition that application of mechanistic approaches to understand cross-species shared molecular targets and pathway conservation in the context of hazard characterization, provide significant opportunities in risk assessment (RA) for both human health and environmental safety. Specifically, it has been recognized that a more comprehensive and reliable understanding of similarities and differences in biological pathways across a variety of species will better enable cross-species extrapolation of potential adverse toxicological effects. Ultimately, this would also advance the generation and use of mechanistic data for both human health and environmental RA. A workshop brought together representatives from industry, academia and government to discuss how to improve the use of existing data, and to generate new NAMs data to derive better mechanistic understanding between humans and environmentally-relevant species, ultimately resulting in holistic chemical safety decisions. Thanks to a thorough dialogue among all participants, key challenges, current gaps and research needs were identified, and potential solutions proposed. This discussion highlighted the common objective to progress toward more predictive, mechanistically based, data-driven and animal-free chemical safety assessments. Overall, the participants recognized that there is no single approach which would provide all the answers for bridging the gap between mechanism-based human health and environmental RA, but acknowledged we now have the incentive, tools and data availability to address this concept, maximizing the potential for improvements in both human health and environmental RA.


Assuntos
Meio Ambiente , Saúde Ambiental , Toxicologia/tendências , Animais , Segurança Química , Humanos , Medição de Risco/métodos , Especificidade da Espécie
13.
Metabolites ; 9(5)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083411

RESUMO

Algae are key components of aquatic food chains. Consequently, they are internationally recognised test species for the environmental safety assessment of chemicals. However, existing algal toxicity test guidelines are not yet optimized to discover molecular modes of action, which require highly-replicated and carefully controlled experiments. Here, we set out to develop a robust, miniaturised and scalable Chlamydomonas reinhardtii toxicity testing approach tailored to meet these demands. We primarily investigated the benefits of synchronised cultures for molecular studies, and of exposure designs that restrict chemical volatilisation yet yield sufficient algal biomass for omics analyses. Flow cytometry and direct-infusion mass spectrometry metabolomics revealed significant and time-resolved changes in sample composition of synchronised cultures. Synchronised cultures in sealed glass vials achieved adequate growth rates at previously unachievably-high inoculation cell densities, with minimal pH drift and negligible chemical loss over 24-h exposures. Algal exposures to a volatile test compound (chlorobenzene) yielded relatively high reproducibility of metabolic phenotypes over experimental repeats. This experimental test system extends existing toxicity testing formats to allow highly-replicated, omics-driven, mode-of-action discovery.

14.
ALTEX ; 36(1): 91-102, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30332685

RESUMO

Current efforts in chemical safety are focused on utilizing human in vitro or alternative animal data in biological pathway context. However, it remains unclear how biological pathways, and toxicology data developed in that context, can be used to quantitatively facilitate decision-making.  The objective of this work is to determine if hypothesis testing using Adverse Outcome Pathways (AOPs) can provide quantitative chemical hazard predictions.  Current methods for predicting hazards of chemicals in a biological pathway context were extensively reviewed, specific case studies examined and computational modeling used to demonstrate quantitative hazard prediction based on an AOP. Since AOPs are chemically agnostic, we propose that AOPs function as hypotheses for how specific chemicals may cause adverse effects via specific pathways. Three broad approaches were identified for testing the hypothesis with AOPs, semi-quantitative weight of evidence, probabilistic, and mechanistic modeling. We then demonstrate how these approaches could be used to test hypotheses using high throughput in vitro data and alternative animal data. Finally, we discuss standards in development and documentation that would facilitate use in a regulatory context. We conclude that quantitative AOPs provide a flexible hypothesis framework for predicting chemical hazards. It accommodates a wide range of approaches that are useful at many stages and build upon one another to become increasingly quantitative.


Assuntos
Rotas de Resultados Adversos , Alternativas aos Testes com Animais , Simulação por Computador , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Substâncias Perigosas/toxicidade , Animais , Tomada de Decisões , Humanos , Projetos de Pesquisa , Medição de Risco
15.
Sci Total Environ ; 628-629: 1542-1556, 2018 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-30045572

RESUMO

The Adverse Outcome Pathway (AOP) concept is a knowledge assembly and communication tool to facilitate the transparent translation of mechanistic information into outcomes meaningful to the regulatory assessment of chemicals. The AOP framework and associated knowledgebases (KBs) have received significant attention and use in the regulatory toxicology community. However, it is increasingly apparent that the potential stakeholder community for the AOP concept and AOP KBs is broader than scientists and regulators directly involved in chemical safety assessment. In this paper we identify and describe those stakeholders who currently-or in the future-could benefit from the application of the AOP framework and knowledge to specific problems. We also summarize the challenges faced in implementing pathway-based approaches such as the AOP framework in biological sciences, and provide a series of recommendations to meet critical needs to ensure further progression of the framework as a useful, sustainable and dependable tool supporting assessments of both human health and the environment. Although the AOP concept has the potential to significantly impact the organization and interpretation of biological information in a variety of disciplines/applications, this promise can only be fully realized through the active engagement of, and input from multiple stakeholders, requiring multi-pronged substantive long-term planning and strategies.

16.
Environ Toxicol Chem ; 36(6): 1411-1421, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28543973

RESUMO

Our ability to conduct whole-organism toxicity tests to understand chemical safety has been outpaced by the synthesis of new chemicals for a wide variety of commercial applications. As a result, scientists and risk assessors are turning to mechanistically based studies to increase efficiencies in chemical risk assessment and making greater use of in vitro and in silico methods to evaluate potential environmental and human health hazards. In this context, the adverse outcome pathway (AOP) framework has gained traction in regulatory science because it offers an efficient and effective means for capturing available knowledge describing the linkage between mechanistic data and the apical toxicity end points required for regulatory assessments. A number of international activities have focused on AOP development and various applications to regulatory decision-making. These initiatives have prompted dialogue between research scientists and regulatory communities to consider how best to use the AOP framework. Although expert-facilitated discussions and AOP development have been critical in moving the science of AOPs forward, it was recognized that a survey of the broader scientific and regulatory communities would aid in identifying current limitations while guiding future initiatives for the AOP framework. To that end, a global horizon scanning exercise was conducted to solicit questions concerning the challenges or limitations that must be addressed to realize the full potential of the AOP framework in research and regulatory decision-making. The questions received fell into several broad topical areas: AOP networks, quantitative AOPs, collaboration on and communication of AOP knowledge, AOP discovery and development, chemical and cross-species extrapolation, exposure/toxicokinetics considerations, and AOP applications. Expert ranking was then used to prioritize questions for each category, where 4 broad themes emerged that could help inform and guide future AOP research and regulatory initiatives. In addition, frequently asked questions were identified and addressed by experts in the field. Answers to frequently asked questions will aid in addressing common misperceptions and will allow for clarification of AOP topics. The need for this type of clarification was highlighted with surprising frequency by our question submitters, indicating that improvements are needed in communicating the AOP framework among the scientific and regulatory communities. Overall, horizon scanning engaged the global scientific community to help identify key questions surrounding the AOP framework and guide the direction of future initiatives. Environ Toxicol Chem 2017;36:1411-1421. © 2017 SETAC.


Assuntos
Medição de Risco/métodos , Animais , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/fisiologia , Regulamentação Governamental , Substâncias Perigosas/toxicidade , Humanos , Modelos Teóricos , Inquéritos e Questionários
17.
Toxicol Sci ; 158(2): 252-262, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28525648

RESUMO

In conjunction with the second International Environmental Omics Symposium (iEOS) conference, held at the University of Liverpool (United Kingdom) in September 2014, a workshop was held to bring together experts in toxicology and regulatory science from academia, government and industry. The purpose of the workshop was to review the specific roles that high-content omics datasets (eg, transcriptomics, metabolomics, lipidomics, and proteomics) can hold within the adverse outcome pathway (AOP) framework for supporting ecological and human health risk assessments. In light of the growing number of examples of the application of omics data in the context of ecological risk assessment, we considered how omics datasets might continue to support the AOP framework. In particular, the role of omics in identifying potential AOP molecular initiating events and providing supportive evidence of key events at different levels of biological organization and across taxonomic groups was discussed. Areas with potential for short and medium-term breakthroughs were also discussed, such as providing mechanistic evidence to support chemical read-across, providing weight of evidence information for mode of action assignment, understanding biological networks, and developing robust extrapolations of species-sensitivity. Key challenges that need to be addressed were considered, including the need for a cohesive approach towards experimental design, the lack of a mutually agreed framework to quantitatively link genes and pathways to key events, and the need for better interpretation of chemically induced changes at the molecular level. This article was developed to provide an overview of ecological risk assessment process and a perspective on how high content molecular-level datasets can support the future of assessment procedures through the AOP framework.


Assuntos
Rotas de Resultados Adversos , Metabolismo dos Lipídeos , Metabolômica , Proteômica , Transcriptoma , Animais , Humanos , Medição de Risco
18.
Chemosphere ; 64(1): 17-25, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16457872

RESUMO

Previously we have presented aquatic toxicity data for the class of anionic surfactant ester sulphonates (ES) to Daphnia magna. We now present toxicity data for binary mixtures of ES substances with reference substances of known mode of action. Using a toxic unit (TU) approach, data indicated that ES substances exhibit concentration addition with linear alkylbenzene sulphonate (LAS) and phenols and response addition with alcohols. This suggests that ES behave with a similar mode of action to phenol and LAS which are known polar narcotics and with a dissimilar mode of action to alcohols which are known baseline narcotics.


Assuntos
Alcanossulfonatos/toxicidade , Daphnia/efeitos dos fármacos , Entorpecentes/toxicidade , Álcoois/toxicidade , Ácidos Alcanossulfônicos/toxicidade , Animais , Daphnia/fisiologia , Interações Medicamentosas , Fenol/toxicidade , Tensoativos/toxicidade , Testes de Toxicidade Aguda , Poluentes Químicos da Água/toxicidade
19.
Chemosphere ; 63(9): 1443-50, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16293293

RESUMO

This paper develops quantitative structure activity relationships (QSARs) for the acute aquatic toxicity of the anionic surfactants linear alkylbenzene sulphonates (LAS) and ester sulphonates (ES) to Daphnia magna, the aim being to investigate the modes of action by comparing the QSARs for the two types of surfactant. The generated data for ES have been used to develop a QSAR correlating toxicity with calculated log P values: log(1/EC50)= 0.78 log P+1.37. This equation has an intercept 1.1 log units lower than a QSAR for linear alkylbenzene sulphonates (LAS). The findings suggest that either ES surfactants act by a different mode of action to LAS and other anionic surfactants or the log P calculation method introduces a systematic overestimate when applied to ES.


Assuntos
Ácidos Alcanossulfônicos/toxicidade , Daphnia/efeitos dos fármacos , Relação Quantitativa Estrutura-Atividade , Tensoativos/química , Tensoativos/toxicidade , Ácidos Alcanossulfônicos/química , Animais , Ânions , Ésteres/química , Ésteres/toxicidade , Hidrólise , Micelas , Poluentes Químicos da Água/toxicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA