Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139703

RESUMO

Radiation-induced damage and instabilities in back-illuminated silicon detectors have proved to be challenging in multiple NASA and commercial applications. In this paper, we develop a model of detector quantum efficiency (QE) as a function of Si-SiO2 interface and oxide trap densities to analyze the performance of silicon detectors and explore the requirements for stable, radiation-hardened surface passivation. By analyzing QE data acquired before, during, and after, exposure to damaging UV radiation, we explore the physical and chemical mechanisms underlying UV-induced surface damage, variable surface charge, QE, and stability in ion-implanted and delta-doped detectors. Delta-doped CCD and CMOS image sensors are shown to be uniquely hardened against surface damage caused by ionizing radiation, enabling the stability and photometric accuracy required by NASA for exoplanet science and time domain astronomy.

2.
J Synchrotron Radiat ; 28(Pt 1): 131-145, 2021 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399562

RESUMO

In this paper the back-side-illuminated Percival 2-Megapixel (P2M) detector is presented, along with its characterization by means of optical and X-ray photons. For the first time, the response of the system to soft X-rays (250 eV to 1 keV) is presented. The main performance parameters of the first detector are measured, assessing the capabilities in terms of noise, dynamic range and single-photon discrimination capability. Present limitations and coming improvements are discussed.

3.
Appl Opt ; 54(11): 3507-12, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25967344

RESUMO

We report on the fabrication of metal-dielectric thin film stacks deposited directly onto silicon substrates for use as ultraviolet bandpass filters. Integration of these filters onto silicon improves the admittance matching of the structure when compared to similar designs fabricated on transparent substrates, leading to higher peak transmission or improved out-of-band rejection if used with a Si-based sensor platform. Test structures fabricated with metallic Al and atomic layer deposited Al2O3 were characterized with spectroscopic ellipsometry and agree well with optical models. These models predict transmission as high as 90% the spectral range of 200-300 nm for simple three-layer coatings.

4.
Appl Opt ; 51(3): 365-9, 2012 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-22270664

RESUMO

We have used molecular beam epitaxy (MBE) based delta-doping technology to demonstrate nearly 100% internal quantum efficiency (QE) on silicon electron-multiplied charge-coupled devices (EMCCDs) for single photon counting detection applications. We used atomic layer deposition (ALD) for antireflection (AR) coatings and achieved atomic-scale control over the interfaces and thin film materials parameters. By combining the precision control of MBE and ALD, we have demonstrated more than 50% external QE in the far and near ultraviolet in megapixel arrays. We have demonstrated that other important device performance parameters such as dark current are unchanged after these processes. In this paper, we briefly review ultraviolet detection, report on these results, and briefly discuss the techniques and processes employed.


Assuntos
Dispositivos Ópticos , Teoria Quântica , Radiometria/instrumentação , Raios Ultravioleta , Elétrons , Desenho de Equipamento , Fótons , Silício/química
5.
Appl Opt ; 50(21): 4180-8, 2011 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-21772406

RESUMO

We report on the development of coatings for a charged-coupled device (CCD) detector optimized for use in a fixed dispersion UV spectrograph. Because of the rapidly changing index of refraction of Si, single layer broadband antireflection (AR) coatings are not suitable to increase quantum efficiency at all wavelengths of interest. Instead, we describe a creative solution that provides excellent performance over UV wavelengths. We describe progress in the development of a coated CCD detector with theoretical quantum efficiencies (QEs) of greater than 60% at wavelengths from 120 to 300 nm. This high efficiency may be reached by coating a backside-illuminated, thinned, delta-doped CCD with a series of thin film AR coatings. The materials tested include MgF(2) (optimized for highest performance from 120-150 nm), SiO(2) (150-180 nm), Al(2)O(3) (180-240 nm), MgO (200-250 nm), and HfO(2) (240-300 nm). A variety of deposition techniques were tested and a selection of coatings that minimized reflectance on a Si test wafer were applied to functional devices. We also discuss future uses and improvements, including graded and multilayer coatings.

6.
Rev Sci Instrum ; 82(4): 043102, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21528990

RESUMO

In this paper we present our system design and methodology for making absolute quantum efficiency (QE) measurements through the vacuum ultraviolet (VUV) and verify the system with delta-doped silicon CCDs. Delta-doped detectors provide an excellent platform to validate measurements through the VUV due to their enhanced UV response. The requirements for measuring QE through the VUV are more strenuous than measurements in the near UV and necessitate, among other things, the use of a vacuum monochromator, good dewar chamber vacuum to prevent on-chip condensation, and more stringent handling requirements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA