Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Immunol ; 210(10): 1576-1588, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-37036290

RESUMO

The Brucella abortus double-mutant (ΔznuA ΔnorD Brucella abortus-lacZ [znBAZ]) was assessed for its protective efficacy after vaccination with a single nasal dose. Superior protection was achieved in znBAZ-vaccinated mice against pulmonary, wild-type B. abortus 2308 challenge when compared with conventional livestock Brucella abortus vaccines, the smooth S19 (smooth B. abortus strain 19 vaccine) and rough RB51 (rough mutant vaccine strain of B. abortus) strains. Nasal znBAZ vaccination reduced splenic and lung colonization by wild-type brucellae by >3-4 logs. In contrast, S19 reduced lung colonization by only 32-fold, and RB51 failed to reduce colonization. One profound attribute of znBAZ vaccination was the >3-fold increase in pulmonary CD8+ T cells when compared with other vaccinated groups. S19 vaccination increased only CD4+ T cells. All vaccines induced IFN-γ and TNF-α production by CD4+ T cells, but only znBAZ vaccination enhanced the recruitment of polyfunctional CD8+ T cells, by >100-fold. IL-17 by both CD4+ and CD8+ T cells was also induced by subsequent znBAZ vaccination. These results demonstrate that, in addition to achieving protective immunity by CD4+ T cells, CD8+ T cells, specifically resident memory T cells, also confer protection against brucellosis. The protection obtained by znBAZ vaccination was attributed to IFN-γ-producing CD8+ T cells, because depletion of CD8+ T cells throughout vaccination and challenge phases abrogated protection. The stimulation of only CD4+ T cells by RB51- and S19-vaccinated mice proved insufficient in protecting against pulmonary B. abortus 2308 challenge. Thus, nasal znBAZ vaccination offers an alternative means to elicit protection against brucellosis.


Assuntos
Vacina contra Brucelose , Brucelose , Pneumonia , Animais , Camundongos , Brucella abortus , Vacinação , Camundongos Endogâmicos BALB C
2.
PLoS Pathog ; 17(5): e1009465, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33956909

RESUMO

Salmonella Typhimurium is a causative agent of nontyphoidal salmonellosis, for which there is a lack of a clinically approved vaccine in humans. As an intracellular pathogen, Salmonella impacts many cellular pathways. However, the intercellular communication mechanism facilitated by host-derived small extracellular vesicles (EVs), such as exosomes, is an overlooked aspect of the host responses to this infection. We used a comprehensive proteome-based network analysis of exosomes derived from Salmonella-infected macrophages to identify host molecules that are trafficked via these EVs. This analysis predicted that the host-derived small EVs generated during macrophage infection stimulate macrophages and promote activation of T helper 1 (Th1) cells. We identified that exosomes generated during infection contain Salmonella proteins, including unique antigens previously shown to stimulate protective immune responses against Salmonella in murine studies. Furthermore, we showed that host EVs formed upon infection stimulate a mucosal immune response against Salmonella infection when delivered intranasally to BALB/c mice, a route of antigen administration known to initiate mucosal immunity. Specifically, the administration of these vesicles to animals stimulated the production of anti-Salmonella IgG antibodies, such as anti-OmpA antibodies. Exosomes also stimulated antigen-specific cell-mediated immunity. In particular, splenic mononuclear cells isolated from mice administered with exosomes derived from Salmonella-infected antigen-presenting cells increased CD4+ T cells secreting Th1-type cytokines in response to Salmonella antigens. These results demonstrate that small EVs, formed during infection, contribute to Th1 cell bias in the anti-Salmonella responses. Collectively, this study helps to unravel the role of host-derived small EVs as vehicles transmitting antigens to induce Th1-type immunity against Gram-negative bacteria. Understanding the EV-mediated defense mechanisms will allow the development of future approaches to combat bacterial infections.


Assuntos
Células Apresentadoras de Antígenos/imunologia , Vesículas Extracelulares/imunologia , Imunidade Celular/imunologia , Macrófagos/imunologia , Infecções por Salmonella/imunologia , Salmonella typhimurium/imunologia , Células Th1/imunologia , Animais , Feminino , Macrófagos/patologia , Camundongos , Camundongos Endogâmicos BALB C , Infecções por Salmonella/microbiologia , Infecções por Salmonella/patologia
3.
PLoS Pathog ; 16(1): e1008176, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31951645

RESUMO

Brucellosis remains the most common zoonotic disease globally. Currently no vaccines for humans exist, and conventional brucellosis vaccines for livestock fail to confer complete protection; hence, an improved vaccine is needed. Although Brucella infections primarily occur following a mucosal exposure, vaccines are administered parenterally. Few studies have considered mucosal vaccinations, or even targeting of tissue-resident memory T (TRM) cells. TRM cells protect against viral infections, but less is known of their role in bacterial infections, and even less for brucellosis. Oral prime, nasal boost with a newly developed Brucella abortus double mutant (znBAZ) confers nearly complete protection against pulmonary challenge with wild-type (wt) B. abortus 2308, and its protective efficacy is >2800-fold better than the RB51 vaccine. Vaccination with znBAZ potently stimulated CD8+ T cells, whereas mucosal vaccination with RB51 induced mostly CD4+ T cells. Subsequent analysis revealed these pulmonary CD44+ CD69+ CD8+ T cells to be either CD103+ or CD103- TRM cells, and these sequestered to the lung parenchyma as CXCR3lo and to the airways as CXCR3hi. Both CD8+ TRM subsets contained single-positive IFN-γ and TNF-α, as well as, polyfunctional cells. IL-17-producing CD8+ TRM cells were also induced by znBAZ vaccination, but in vivo IL-17 neutralization had no impact upon protection. In vivo depletion of CD4+ T cells had no impact upon protection in znBAZ-vaccinated mice. In contrast, CD4+ T cell depletion reduced RB51's protective efficacy in spleens and lungs by two- and three-logs, respectively. Although anti-CD8 mAb-treated znBAZ-vaccinated mice showed a significantly reduced pulmonary efficacy, this treatment failed to completely deplete the lung CD8+ T cells, leaving the CD103+ and CD103- CD8+ TRM cell ratios intact. Only znBAZ-vaccinated CD8-/- mice were fully sensitive to pulmonary challenge with virulent wt B. abortus 2308 since CD8+ TRM cells could not be induced. Collectively, these data demonstrate the key role of mucosal vaccination for the generation of CD8+ TRM cells in protecting against pulmonary challenge with virulent B. abortus.


Assuntos
Vacina contra Brucelose/imunologia , Brucella abortus/imunologia , Brucelose/imunologia , Linfócitos T CD8-Positivos/imunologia , Memória Imunológica , Pneumopatias/microbiologia , Administração através da Mucosa , Animais , Vacina contra Brucelose/administração & dosagem , Brucella abortus/genética , Brucelose/prevenção & controle , Feminino , Imunogenicidade da Vacina , Pneumopatias/imunologia , Pneumopatias/prevenção & controle , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mutação , Vacinas Atenuadas/genética , Vacinas Atenuadas/imunologia
4.
Immunol Cell Biol ; 98(8): 667-681, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32479679

RESUMO

Understanding the migration of lymphocytes to nonintestinal mucosal sites is fundamental to developing mucosal vaccination strategies. Studies have shown that nasal and oral immunization with cholera toxin (CT) stimulates, in addition to α4ß7+ , the induction of αE (CD103)ß7+ B cells. To determine the extent to which αE-associated ß7 contributes to antigen (Ag)-specific immunoglobulin (Ig)A responses in the upper respiratory tract, nasal CT vaccination was performed in wild-type (wt) and ß7-/- mice. At 16 days postprimary immunization, upper respiratory tract IgA responses were greater in ß7-/- mice than in wt mice. IgA induction by distal ß7-/- Peyer's patches, mesenteric lymph nodes and small intestinal lamina propria was minimal, in contrast to elevated gut IgA responses in wt mice. By 42 days postprimary immunization, ß7-/- gut IgA responses were restored, and upper respiratory tract Ag-specific IgA responses were equivalent to those of wt mice. Examination of homing receptor expression and cell-sorting experiments revealed that ß7-/- mice have increased usage of ß1 and αE integrins by upper respiratory tract B cells, suggesting that alternative integrins can facilitate lymphocyte migration to the upper respiratory tract, especially in the absence of ß7.


Assuntos
Linfócitos B/imunologia , Imunidade nas Mucosas , Imunoglobulina A , Cadeias beta de Integrinas , Administração Intranasal , Animais , Toxina da Cólera/administração & dosagem , Cadeias beta de Integrinas/genética , Mucosa Intestinal/imunologia , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Nódulos Linfáticos Agregados/imunologia , Vacinação/métodos
5.
BMC Microbiol ; 18(1): 217, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30563470

RESUMO

BACKGROUND: Human granulocytic anaplasmosis (HGA) is a tick-borne disease caused by the etiologic agent Anaplasma phagocytophilum. HGA was designated a nationally notifiable disease in the United States in 1998. Currently there are no vaccines available against HGA. Conserved membrane proteins that are subdominant in Anaplasma species, such as VirB9 and VirB10, may represent better vaccine targets than the variable immunodominant surface proteins. VirB9 and VirB10 are constituents of the Type 4 secretion system (T4SS) that is conserved amongst many intracellular bacteria and performs essential functions for invasion and survival in host cells. RESULTS: Immunogenicity and contribution to protection, provided after intramuscular vaccination of plasmid DNA encoding VirB9-1, VirB9-2, and VirB10 followed by inoculation of homologous recombinant proteins, in a prime-boost immunization strategy was evaluated in a murine model of HGA. Recombinant VirB9-1-, VirB9-2-, and VirB10-vaccinated mice developed antibody responses that specifically reacted with A. phagocytophilum organisms. However, only the mice vaccinated with VirB10 developed a significant increase in IFN-γ CD4+ T cells and partial protection against challenge with A. phagocytophilum. CONCLUSIONS: This work provides evidence that A. phagocytophilum T4SS VirB10 is partially protective in a murine model against infection in an IFN-γ-dependent fashion and suggests that this protein may be a potential vaccine candidate against this and possibly other pathogenic bacteria with a T4SS.


Assuntos
Anaplasma phagocytophilum/imunologia , Anaplasmose/prevenção & controle , Proteínas de Bactérias/administração & dosagem , Vacinas Bacterianas/administração & dosagem , Anaplasma phagocytophilum/genética , Anaplasmose/imunologia , Anaplasmose/microbiologia , Animais , Anticorpos Antibacterianos/imunologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/imunologia , Vacinas Bacterianas/genética , Vacinas Bacterianas/imunologia , Linfócitos T CD4-Positivos/imunologia , Feminino , Humanos , Interferon gama/imunologia , Camundongos , Camundongos Endogâmicos C3H , Vacinação
6.
J Immunol ; 196(12): 5036-46, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27194787

RESUMO

Regulatory T cells (Tregs) induced during autoimmunity often become quiescent and unable to resolve disease, suggesting inadequate activation. Resolution of established experimental autoimmune encephalomyelitis (EAE) can be achieved with myelin oligodendrocyte glycoprotein (MOG) fused to reovirus protein σ1 (MOG-pσ1), which activates Tregs, restoring protection, but requiring other regulatory cells to revitalize them. B cells have a dichotomous role in both the pathogenesis and recovery from EAE. Although inflammatory B cells contribute to EAE's pathogenesis, treatment of EAE mice with MOG-pσ1, but not OVA-pσ1, resulted in an influx of IL-10-producing B220(+)CD5(+) B regulatory cells (Bregs) enabling Tregs to recover their inhibitory activity, and in turn, leading to the rapid amelioration of EAE. These findings implicate direct interactions between Bregs and Tregs to facilitate this recovery. Adoptive transfer of B220(+)CD5(-) B cells from MOG-pσ1-treated EAE or Bregs from PBS-treated EAE mice did not resolve disease, whereas the adoptive transfer of MOG-pσ1-induced B220(+)CD5(+) Bregs greatly ameliorated EAE. MOG-pσ1-, but not OVA-pσ1-induced IL-10-producing Bregs, expressed elevated levels of B and T lymphocyte attenuator (BTLA) relative to CD5(-) B cells, as opposed to Tregs or effector T (Teff) cells, whose BTLA expression was not affected. These induced Bregs restored EAE Treg function in a BTLA-dependent manner. BTLA(-/-) mice showed more pronounced EAE with fewer Tregs, but upon adoptive transfer of MOG-pσ1-induced BTLA(+) Bregs, BTLA(-/-) mice were protected against EAE. Hence, this evidence shows the importance of BTLA in activating Tregs to facilitate recovery from EAE.


Assuntos
Linfócitos B Reguladores/imunologia , Encefalomielite Autoimune Experimental/imunologia , Receptores Imunológicos/imunologia , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Linfócitos B Reguladores/efeitos dos fármacos , Linfócitos B Reguladores/fisiologia , Antígenos CD5/genética , Antígenos CD5/imunologia , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/fisiopatologia , Interleucina-10/biossíntese , Interleucina-10/imunologia , Antígenos Comuns de Leucócito/genética , Antígenos Comuns de Leucócito/imunologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos C57BL , Glicoproteína Mielina-Oligodendrócito/administração & dosagem , Glicoproteína Mielina-Oligodendrócito/imunologia , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Linfócitos T Reguladores/patologia , Linfócitos T Reguladores/fisiologia
7.
Hum Mutat ; 37(1): 127-34, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26467025

RESUMO

We developed a rules-based scoring system to classify DNA variants into five categories including pathogenic, likely pathogenic, variant of uncertain significance (VUS), likely benign, and benign. Over 16,500 pathogenicity assessments on 11,894 variants from 338 genes were analyzed for pathogenicity based on prediction tools, population frequency, co-occurrence, segregation, and functional studies collected from internal and external sources. Scores were calculated by trained scientists using a quantitative framework that assigned differential weighting to these five types of data. We performed descriptive and comparative statistics on the dataset and tested interobserver concordance among the trained scientists. Private variants defined as variants found within single families (n = 5,182), were either VUS (80.5%; n = 4,169) or likely pathogenic (19.5%; n = 1,013). The remaining variants (n = 6,712) were VUS (38.4%; n = 2,577) or likely benign/benign (34.7%; n = 2,327) or likely pathogenic/pathogenic (26.9%, n = 1,808). Exact agreement between the trained scientists on the final variant score was 98.5% [95% confidence interval (CI) (98.0, 98.9)] with an interobserver consistency of 97% [95% CI (91.5, 99.4)]. Variant scores were stable and showed increasing odds of being in agreement with new data when re-evaluated periodically. This carefully curated, standardized variant pathogenicity scoring system provides reliable pathogenicity scores for DNA variants encountered in a clinical laboratory setting.


Assuntos
Biologia Computacional/métodos , Predisposição Genética para Doença , Variação Genética , Genômica/métodos , Software , Humanos , Variações Dependentes do Observador , Reprodutibilidade dos Testes , Navegador
8.
Appl Environ Microbiol ; 82(14): 4100-4111, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27129962

RESUMO

UNLABELLED: Recurrent outbreaks of bacterial gastroenteritis linked to the consumption of fresh fruits and vegetables highlight the paucity of understanding of the ecology of Salmonella enterica under crop production and postharvest conditions. These gaps in knowledge are due, at least in part, to the lack of suitable surrogate organisms for studies for which biosafety level 2 is problematic. Therefore, we constructed and validated an avirulent strain of Salmonella enterica serovar Typhimurium. The strain lacks major Salmonella pathogenicity islands SPI-1, SPI-2, SPI-3, SPI-4, and SPI-5 as well as the virulence plasmid pSLT. Deletions and the absence of genomic rearrangements were confirmed by genomic sequencing, and the surrogate behaved like the parental wild-type strain on selective media. A loss-of-function (phoN) selective marker allowed the differentiation of this strain from wild-type strains on a medium containing a chromogenic substrate for alkaline phosphatase. Lack of virulence was confirmed by oral infection of female BALB/c mice. The strain persisted in tomatoes, cantaloupes, leafy greens, and soil with the same kinetics as the parental wild-type and selected outbreak strains, and it reached similar final population levels. The responses of this strain to heat treatment and disinfectants were similar to those of the wild type, supporting its potential as a surrogate for future studies on the ecology and survival of Salmonella in production and processing environments. IMPORTANCE: There is significant interest in understanding the ecology of human pathogens in environments outside of their animal hosts, including the crop production environment. However, manipulative field experiments with virulent human pathogens are unlikely to receive regulatory approval due to the obvious risks. Therefore, we constructed an avirulent strain of S. enterica serovar Typhimurium and characterized it extensively.


Assuntos
Microbiologia de Alimentos/métodos , Frutas/microbiologia , Salmonella typhimurium/crescimento & desenvolvimento , Salmonella typhimurium/patogenicidade , Verduras/microbiologia , Animais , Modelos Animais de Doenças , Ilhas Genômicas , Camundongos Endogâmicos BALB C , Infecções por Salmonella/microbiologia , Infecções por Salmonella/patologia , Salmonella typhimurium/genética , Salmonella typhimurium/isolamento & purificação , Deleção de Sequência , Microbiologia do Solo , Virulência
9.
Microorganisms ; 12(1)2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38257995

RESUMO

Susceptibility to brucellosis remains prevalent, even in herds vaccinated with conventional vaccines. Efforts are underway to develop an improved brucellosis vaccine, and possibly a universal vaccine, given that Brucella species are highly homologous. To this end, two B. melitensis mutants were developed, znBM-lacZ (znBMZ) and znBM-mCherry (znBM-mC), and were tested for their ability to confer systemic immunity against virulent B. melitensis challenge. To assess the extent of their attenuation, bone-marrow-derived macrophages and human TF-1 myeloid cells were infected with both mutants, and the inability to replicate within these cells was noted. Mice infected with varying doses of znBM-mC cleared the brucellae within 6-10 weeks. To test for efficacy against systemic disease, groups of mice were vaccinated once by the intraperitoneal route with either znBMZ or B. abortus S19 vaccine. Relative to the PBS-dosed mice, znBMZ vaccination greatly reduced splenic brucellae colonization by ~25,000-fold compared to 700-fold for S19-vaccinated mice. Not surprisingly, both znBMZ and S19 strains induced IFN-γ+ CD4+ T cells, yet only znBMZ induced IFN-γ+ CD8+ T cells. While both strains induced CD4+ effector memory T cells (Tems), only znBMZ induced CD8+ Tems. Thus, these results show that the described znBM mutants are safe, able to elicit CD4+ and CD8+ T cell immunity without a boost, and highly effective, rendering them promising vaccine candidates for livestock.

10.
Horm Res Paediatr ; : 1-8, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38806007

RESUMO

INTRODUCTION: In the era of next-generation sequencing, clinicians frequently encounter variants of unknown significance (VUS) in genetic testing. VUS may be reclassified over time as genetic knowledge grows. We know little about how best to approach VUS in the maturity-onset diabetes of the young (MODY). Therefore, our study aimed to determine the utility of reanalysis of previous VUS results in genetic confirmation of MODY. METHODS: A single-center retrospective chart review identified 85 subjects with a MODY clinical diagnosis. We reanalyzed genetic testing in 10 subjects with 14 unique VUS on MODY genes that was performed >3 years before the study. Demographic, clinical, and biochemical data was collected for those individuals. RESULTS: After reanalysis, 43% (6/14) of the gene variants were reclassified to a different category: 7% (1/14) were "likely pathogenic" and 36% (5/14) were "benign" or "likely benign." The reclassified pathogenic variant was in HNF1A and all reclassified benign variants were in HNF1A, HNF1B and PDX1. The median time between MODY testing and reclassification was 8 years (range: 4-10 years). CONCLUSION: In sum, iterative reanalyzing the genetic data from VUS found during MODY testing may provide high-yield diagnostic information. Further studies are warranted to identify the optimal time and frequency for such analyses.

11.
Sci Rep ; 13(1): 19489, 2023 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-37945636

RESUMO

Sjögren's Syndrome (SjS) results in loss of salivary and lacrimal gland excretion due to an autoimmune attack on these secretory glands. Conventional SjS treatments address the symptoms, but not the cause of disease. Recognizing this deficit of treatments to reverse SjS disease, studies were pursued using the fimbriae from enterotoxigenic E. coli, colonization factor antigen I (CFA/I), which has anti-inflammatory properties. To determine if CFA/I fimbriae could attenuate SjS-like disease in C57BL/6.NOD-Aec1Aec2 (SjS) females, the Lactococcus lactis (LL) 301 strain was developed to chromosomally express the cfaI operon. Western blot analysis confirmed CFA/I protein expression, and this was tested in SjS females at different stages of disease. Repeated dosing with LL 301 proved effective in mitigating salivary flow loss and in reducing anti-nuclear antibodies (ANA) and inflammation in the submandibular glands (SMGs) in SjS females and in restoring salivary flow in diseased mice. LL 301 treatment reduced proinflammatory cytokine production with concomitant increases in TGF-ß+ CD25+ CD4+ T cells. Moreover, LL 301 treatment reduced draining lymph and SMG follicular T helper (Tfh) cell levels and proinflammatory cytokines, IFN-γ, IL-6, IL-17, and IL-21. Such evidence points to the therapeutic capacity of CFA/I protein to suppress SjS disease and to have restorative properties in combating autoimmune disease.


Assuntos
Lactococcus lactis , Síndrome de Sjogren , Feminino , Animais , Camundongos , Síndrome de Sjogren/genética , Síndrome de Sjogren/terapia , Escherichia coli , Lactococcus lactis/genética , Camundongos Endogâmicos NOD , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
12.
Front Immunol ; 13: 995327, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263034

RESUMO

Re-emerging zoonotic pathogen Brucella spp. continues to impact developing countries and persists in expanding populations of wildlife species in the US, constantly threatening infection of our domestic herds. The development of improved animal and human vaccines remains a priority. In this study, immunity to a novel live attenuated B. melitensis strain, termed znBM-mC, was characterized. An oral prime, intranasal (IN) boost strategy conferred exquisite protection against pulmonary challenge, with wild-type (wt) B. melitensis providing nearly complete protection in the lungs and spleens from brucellae colonization. Vaccination with znBM-mC showed an IFN-γ+ CD8+ T-cell bias in the lungs as opposed to Rev 1-vaccinated mice showing IFN-γ+ CD4+ T-cell inclination. Lung CD4+ and CD8+ effector memory T cells (TEMs) increased over 200-fold; and lung CD4+ and CD8+ resident memory T cells (TRMs) increased more than 250- and 150-fold, respectively. These T cells served as the primary producers of IFN-γ in the lungs, which was essential for vaccine clearance and the predominant cytokine generated pre-and post-challenge with wt B. melitensis 16M; znBM-mC growth could not be arrested in IFN-γ-/- mice. Increases in lung TNF-α and IL-17 were also induced, with IL-17 being mostly derived from CD4+ T cells. Vaccination of CD4-/-, CD8-/-, and B6 mice with znBM-mC conferred full protection in the lungs and spleens post-pulmonary challenge with virulent B. melitensis; vaccination of IL-17-/- mice resulted in the protection of the lungs, but not the spleen. These data demonstrate the efficacy of mucosal vaccine administration for the generation of protective memory T cells against wt B. melitensis.


Assuntos
Vacina contra Brucelose , Brucella melitensis , Brucelose , Humanos , Camundongos , Animais , Brucella melitensis/genética , Interleucina-17 , Brucelose/prevenção & controle , Fator de Necrose Tumoral alfa , Vacinação , Linfócitos T CD8-Positivos , Subpopulações de Linfócitos T , Linfócitos T CD4-Positivos
13.
Front Microbiol ; 13: 1018165, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36620020

RESUMO

Brucellosis is a disease of livestock that is commonly asymptomatic until an abortion occurs. Disease in humans results from contact of infected livestock or consumption of contaminated milk or meat. Brucella zoonosis is primarily caused by one of three species that infect livestock, Bacillus abortus in cattle, B. melitensis in goats and sheep, and B. suis in pigs. To aid in disease prophylaxis, livestock vaccines are available, but are only 70% effective; hence, improved vaccines are needed to mitigate disease, particularly in countries where disease remains pervasive. The absence of knowing which proteins confer complete protection limits development of subunit vaccines. Instead, efforts are focused on developing new and improved live, attenuated Brucella vaccines, since these mimic attributes of wild-type Brucella, and stimulate host immune, particularly T helper 1-type responses, required for protection. In considering their development, the new mutants must address Brucella's defense mechanisms normally active to circumvent host immune detection. Vaccination approaches should also consider mode and route of delivery since disease transmission among livestock and humans is believed to occur via the naso-oropharyngeal tissues. By arming the host's mucosal immune defenses with resident memory T cells (TRMs) and by expanding the sources of IFN-γ, brucellae dissemination from the site of infection to systemic tissues can be prevented. In this review, points of discussion focus on understanding the various immune mechanisms involved in disease progression and which immune players are important in fighting disease.

14.
J Extracell Vesicles ; 11(9): e12267, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36134734

RESUMO

Small extracellular vesicles (sEVs) produced by antigen-presenting cells represent a novel mechanism of cell-to-cell communication. The sEVs have been shown to drive Th1-type adaptive immune responses against intracellular infections such as Salmonella. In this study, we have demonstrated that an administration of sEVs produced by Salmonella-infected macrophages to BALB/c mice that were then challenged with Salmonella infection decreased bacterial load in infected animals and led to protection against a lethal dose of Salmonella. Second, the same sEVs induced a robust production of IgA anti-Salmonella antibodies (Abs) in BALB/c mice, including IgA anti-OmpD Abs. These results show that the nanoscale sEVs stimulate adaptive immune responses against intracellular pathogens and that these sEVs can be used to provide animals with complete protection against lethal infection, such as the systemic bacterial infection in immunodeficient BALB/c mice.


Assuntos
Vesículas Extracelulares , Infecções por Salmonella , Animais , Anticorpos Antibacterianos , Imunidade nas Mucosas , Imunoglobulina A , Camundongos , Camundongos Endogâmicos BALB C , Salmonella , Infecções por Salmonella/prevenção & controle
15.
Immunol Lett ; 239: 12-19, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34333043

RESUMO

Colonization factor antigen I (CFA/I) fimbria, an adhesin from enterotoxigenic Escherichia coli, confers protection in murine autoimmune models for type 1 diabetes (T1D), multiple sclerosis, and rheumatoid arthritis. Although CFA/I fimbriae's initial mode of action is in a bystander or in an antigen (Ag)-independent fashion, protection is ultimately dependent upon the induction and/or activation of auto-Ag-specific regulatory T cells (Tregs). However, little is known about how protection transitions from bystander suppression to Ag-specific Tregs. Since dendritic cells (DCs) play an integral role in fate decisions for T cells becoming inflammatory or tolerogenic, the described study tests the hypothesis that Lactococcus lactis expressing CFA/I (LL-CFA/I) stimulates DCs to establish a regulatory microenvironment. To this end, bone marrow-derived dendritic cells (BMDCs) were infected in vitro with LL-CFA/I. Results revealed increased production of IL-10, TGF-ß, and indoleamine 2,3-deoxygenase (IDO). Although co-culture of LL-CFA/I infected BMDCs with naïve T cells did not promote Foxp3 expression, TNF-α and IFN-γ production was suppressed. NOD mice orally dosed with LL-CFA/I showed an increase in regulatory plasmacytoid DCs (pDCs) expressing IDO and TGF-ß in pancreatic lymph nodes (PaLNs) and spleen three days post-treatment. However, Tregs did not appear in the mucosal inductive sites until much later. These findings show that LL-CFA/I influences specific DC populations to establish tolerance.


Assuntos
Células Dendríticas/imunologia , Diabetes Mellitus Tipo 1/prevenção & controle , Lactococcus lactis/imunologia , Probióticos/administração & dosagem , Administração Oral , Animais , Antígenos de Bactérias/genética , Antígenos de Bactérias/imunologia , Antígenos de Bactérias/metabolismo , Glicemia/análise , Linfócitos T CD4-Positivos , Células Cultivadas , Técnicas de Cocultura , Células Dendríticas/metabolismo , Diabetes Mellitus Tipo 1/diagnóstico , Diabetes Mellitus Tipo 1/genética , Diabetes Mellitus Tipo 1/imunologia , Modelos Animais de Doenças , Feminino , Proteínas de Fímbrias/genética , Proteínas de Fímbrias/imunologia , Proteínas de Fímbrias/metabolismo , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Linfonodos/citologia , Camundongos , Camundongos Transgênicos , Cultura Primária de Células , Baço/citologia , Fator de Crescimento Transformador beta/metabolismo
16.
Front Immunol ; 12: 697953, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34305935

RESUMO

Past studies with the live, double-mutant B. abortus (znBAZ) strain resulted in nearly complete protection of mice against pulmonary challenge with wild-type (wt) Brucella via a dominant CD8+ T cell response. To understand the contribution innate immune cells in priming CD8+ T cell responses, mice were nasally dosed with wt B. abortus, smooth vaccine strain 19 (S19), or znBAZ, and examined for innate immune cell activation. Flow cytometric analysis revealed that znBAZ, but not wt B. abortus nor S19 infection, induces up to a 5-fold increase in the frequency of IFN-γ-producing NK cells in mouse lungs. These NK cells express increased CXCR3 and Ki67, indicating their recruitment and proliferation subsequent to znBAZ infection. Their activation status was augmented noted by the increased NKp46 and granzyme B, but decreased NKG2A expression. Further analysis demonstrated that both lung caspase-1+ inflammatory monocytes and monocyte-derived macrophages secrete chemokines and cytokines responsible for NK cell recruitment and activation. Moreover, neutralizing IL-18, an NK cell-activating cytokine, reduced the znBAZ-induced early NK cell response. NK cell depletion also significantly impaired lung dendritic cell (DC) activation and migration to the lower respiratory lymph nodes (LRLNs). Both lung DC activation and migration to LRLNs were significantly impaired in NK cell-depleted or IFN-γ-/- mice, particularly the CD11b+ and monocytic DC subsets. Furthermore, znBAZ vaccination significantly induced CD8+ T cells, and upon in vivo NK cell depletion, CD8+ T cells were reduced 3-fold compared to isotype-treated mice. In summary, these data show that znBAZ induces lung IFN-γ+ NK cells, which plays a critical role in influencing lung DC activation, migration, and promoting protective CD8+ T cell development.


Assuntos
Vacina contra Brucelose/imunologia , Linfócitos T CD8-Positivos/imunologia , Imunidade nas Mucosas/imunologia , Células Matadoras Naturais/imunologia , Ativação Linfocitária/imunologia , Animais , Brucella abortus/imunologia , Brucelose/imunologia , Brucelose/prevenção & controle , Feminino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Mucosa Respiratória/imunologia
17.
Arthritis Res Ther ; 23(1): 99, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33823920

RESUMO

BACKGROUND: Sjögren's syndrome (SjS), one of the most common autoimmune diseases, impacts millions of people annually. SjS results from autoimmune attack on exocrine (salivary and lacrimal) glands, and women are nine times more likely to be affected than men. To date, no vaccine or therapeutic exists to treat SjS, and patients must rely on lifelong therapies to alleviate symptoms. METHODS: Oral treatment with the adhesin from enterotoxigenic Escherichia coli colonization factor antigen I (CFA/I) fimbriae protects against several autoimmune diseases in an antigen (Ag)-independent manner. Lactococcus lactis, which was recently adapted to express CFA/I fimbriae (LL-CFA/I), effectively suppresses inflammation by the induction of infectious tolerance via Ag-specific regulatory T cells (Tregs), that produce IL-10 and TGF-ß. To test the hypothesis that CFA/I fimbriae can offset the development of inflammatory T cells via Treg induction, oral treatments with LL-CFA/I were performed on the spontaneous, genetically defined model for SjS, C57BL/6.NOD-Aec1Aec2 mice to maintain salivary flow. RESULTS: Six-week (wk)-old C57BL/6.NOD-Aec1Aec2 mice were orally dosed with LL-CFA/I and treated every 3 wks; control groups were given L. lactis vector or PBS. LL-CFA/I-treated mice retained salivary flow up to 28 wks of age and showed significantly reduced incidence of inflammatory infiltration into the submandibular and lacrimal glands relative to PBS-treated mice. A significant increase in Foxp3+ and IL-10- and TGF-ß-producing Tregs was observed. Moreover, LL-CFA/I significantly reduced the expression of proinflammatory cytokines, IL-6, IL-17, GM-CSF, and IFN-γ. Adoptive transfer of CD4+ T cells from LL-CFA/I-treated, not LL vector-treated mice, restored salivary flow in diseased SjS mice. CONCLUSION: These data demonstrate that oral LL-CFA/I reduce or halts SjS progression, and these studies will provide the basis for future testing in SjS patients.


Assuntos
Escherichia coli Enterotoxigênica , Lactococcus lactis , Síndrome de Sjogren , Animais , Modelos Animais de Doenças , Proteínas de Fímbrias , Humanos , Lactococcus lactis/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Modelos Genéticos , Síndrome de Sjogren/genética , Linfócitos T Reguladores
18.
Sci Rep ; 10(1): 6156, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32273533

RESUMO

Antigen (Ag)-specific tolerization prevents type 1 diabetes (T1D) in non-obese diabetic (NOD) mice but proved less effective in humans. Several auto-Ags are fundamental to disease development, suggesting T1D etiology is heterogeneous and may limit the effectiveness of Ag-specific therapies to distinct disease endotypes. Colonization factor antigen I (CFA/I) fimbriae from Escherichia coli can inhibit autoimmune diseases in murine models by inducing bystander tolerance. To test if Ag-independent stimulation of regulatory T cells (Tregs) can prevent T1D onset, groups of NOD mice were orally treated with Lactococcus lactis (LL) expressing CFA/I. LL-CFA/I treatment beginning at 6 weeks of age reduced disease incidence by 50% (p < 0.05) and increased splenic Tregs producing both IL-10 and IFN-γ 8-fold (p < 0.005) compared to LL-vehicle treated controls. To further describe the role of these Tregs in preventing T1D, protective phenotypes were examined at different time-points. LL-CFA/I treatment suppressed splenic TNF-α+CD8+ T cells 6-fold at 11 weeks (p < 0.005) and promoted a distinct microbiome. At 17 weeks, IFN-γ+CD4+ T cells were suppressed 10-fold (p < 0.005), and at 30 weeks, pancreatic Tbet+CD4+ T cells were suppressed (p < 0.05). These results show oral delivery of modified commensal organisms, such as LL-CFA/I, may be harnessed to restrict Th1 cell-mediated immunity and protect against T1D.


Assuntos
Diabetes Mellitus Tipo 1/prevenção & controle , Proteínas de Fímbrias/uso terapêutico , Administração Oral , Animais , Modelos Animais de Doenças , Feminino , Proteínas de Fímbrias/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos NOD , Linfócitos T Reguladores/fisiologia
19.
Front Immunol ; 9: 2691, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30515168

RESUMO

IL-35, a relatively newly discovered cytokine belonging to the larger IL-12 family, shows unique anti-inflammatory properties, believed to be associated with dedicated receptors and signaling pathways. IL-35 plays a pivotal role in the development and the function of both regulatory B (Bregs) and T cells (Tregs). In order to further its therapeutic potential, a dairy Lactococcus lactis strain was engineered to express murine IL-35 (LL-IL35), and this recombinant strain was applied to suppress collagen-induced arthritis (CIA). Oral administration of LL-IL35 effectively reduced the incidence and disease severity of CIA. When administered therapeutically, LL-IL35 abruptly halted CIA progression with no increase in disease severity by reducing neutrophil influx into the joints. LL-IL35 treatment reduced IFN-γ and IL-17 3.7- and 8.5-fold, respectively, and increased IL-10 production compared to diseased mice. Foxp3+ and Foxp3- CD39+ CD4+ T cells were previously shown to be the Tregs responsible for conferring protection against CIA. Inquiry into their induction revealed that both CCR6+ and CCR6- Foxp3+or- CD39+ CD4+ T cells act as the source of the IL-10 induced by LL-IL35. Thus, this study demonstrates the feasibility and benefits of engineered probiotics for treating autoimmune diseases.


Assuntos
Artrite Experimental/terapia , Linfócitos B Reguladores/imunologia , Interleucinas/imunologia , Lactococcus lactis/imunologia , Linfócitos T Reguladores/imunologia , Animais , Artrite Experimental/imunologia , Artrite Experimental/patologia , Linfócitos B Reguladores/patologia , Interleucinas/genética , Lactococcus lactis/genética , Masculino , Camundongos , Linfócitos T Reguladores/patologia
20.
Microbes Infect ; 20(9-10): 599-605, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29287984

RESUMO

Brucellosis remains burdensome for livestock and humans worldwide. Better vaccines for protection are needed to reduce disease incidence. Immunity to brucellosis and barriers to protection are discussed. The benefits and limitations of conventional and experimental brucellosis vaccines are outlined, and novel vaccination strategies needed to ultimately protect against brucellosis are introduced.


Assuntos
Vacina contra Brucelose/administração & dosagem , Brucelose/prevenção & controle , Brucelose/veterinária , Vacinação/veterinária , Administração através da Mucosa , Animais , Vacina contra Brucelose/imunologia , Brucelose/imunologia , Humanos , Imunidade Celular , Vacinação/tendências
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA