Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 16(3): 5839-63, 2015 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-25775162

RESUMO

The kinetochore proteins assemble onto centromeric chromatin and regulate DNA segregation during cell division. The inner kinetochore proteins bind centromeres while most outer kinetochore proteins assemble at centromeres during mitosis, connecting the complex to microtubules. The centromere-kinetochore complex contains specific nucleosomes and nucleosomal particles. CENP-A replaces canonical H3 in centromeric nucleosomes, defining centromeric chromatin. Next to CENP-A, the CCAN multi-protein complex settles which contains CENP-T/W/S/X. These four proteins are described to form a nucleosomal particle at centromeres. We had found the CENP-T C-terminus and the CENP-S termini next to histone H3.1 but not to CENP-A, suggesting that the Constitutive Centromere-Associated Network (CCAN) bridges a CENP-A- and a H3-containing nucleosome. Here, we show by in vivo FRET that this proximity between CENP-T and H3 is specific for H3.1 but neither for the H3.1 mutants H3.1(C96A) and H3.1(C110A) nor for H3.2 or H3.3. We also found CENP-M next to H3.1 but not to these H3.1 mutants. Consistently, we detected CENP-M next to CENP-S. These data elucidate the local molecular neighborhood of CCAN proteins next to a H3.1-containing centromeric nucleosome. They also indicate an exclusive position of H3.1 clearly distinct from H3.2, thus documenting a local, and potentially also functional, difference between H3.1 and H3.2.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Histonas/metabolismo , Sequência de Aminoácidos , Animais , Linhagem Celular , Cromatina/química , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/química , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Histonas/química , Histonas/genética , Humanos , Cinetocoros/química , Cinetocoros/metabolismo , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Dados de Sequência Molecular , Estrutura Terciária de Proteína , Proteínas Recombinantes de Fusão/biossíntese , Proteínas Recombinantes de Fusão/genética , Alinhamento de Sequência , Proteína Vermelha Fluorescente
2.
Prog Biophys Mol Biol ; 113(1): 33-45, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23562479

RESUMO

BACKGROUND: Combinatorial complexity is a central problem when modeling biochemical reaction networks, since the association of a few components can give rise to a large variation of protein complexes. Available classical modeling approaches are often insufficient for the analysis of very large and complex networks in detail. Recently, we developed a new rule-based modeling approach that facilitates the analysis of spatial and combinatorially complex problems. Here, we explore for the first time how this approach can be applied to a specific biological system, the human kinetochore, which is a multi-protein complex involving over 100 proteins. RESULTS: Applying our freely available SRSim software to a large data set on kinetochore proteins in human cells, we construct a spatial rule-based simulation model of the human inner kinetochore. The model generates an estimation of the probability distribution of the inner kinetochore 3D architecture and we show how to analyze this distribution using information theory. In our model, the formation of a bridge between CenpA and an H3 containing nucleosome only occurs efficiently for higher protein concentration realized during S-phase but may be not in G1. Above a certain nucleosome distance the protein bridge barely formed pointing towards the importance of chromatin structure for kinetochore complex formation. We define a metric for the distance between structures that allow us to identify structural clusters. Using this modeling technique, we explore different hypothetical chromatin layouts. CONCLUSIONS: Applying a rule-based network analysis to the spatial kinetochore complex geometry allowed us to integrate experimental data on kinetochore proteins, suggesting a 3D model of the human inner kinetochore architecture that is governed by a combinatorial algebraic reaction network. This reaction network can serve as bridge between multiple scales of modeling. Our approach can be applied to other systems beyond kinetochores.


Assuntos
Algoritmos , Cinetocoros/química , Cinetocoros/ultraestrutura , Modelos Biológicos , Modelos Químicos , Modelos Moleculares , Sítios de Ligação , Simulação por Computador , Ligação Proteica , Conformação Proteica
3.
PLoS One ; 7(9): e44717, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23028590

RESUMO

Kinetochores are multi-protein megadalton assemblies that are required for attachment of microtubules to centromeres and, in turn, the segregation of chromosomes in mitosis. Kinetochore assembly is a cell cycle regulated multi-step process. The initial step occurs during interphase and involves loading of the 15-subunit constitutive centromere associated complex (CCAN), which contains a 5-subunit (CENP-P/O/R/Q/U) sub-complex. Here we show using a fluorescent three-hybrid (F3H) assay and fluorescence resonance energy transfer (FRET) in living mammalian cells that CENP-P/O/R/Q/U subunits exist in a tightly packed arrangement that involves multifold protein-protein interactions. This sub-complex is, however, not pre-assembled in the cytoplasm, but rather assembled on kinetochores through the step-wise recruitment of CENP-O/P heterodimers and the CENP-P, -O, -R, -Q and -U single protein units. SNAP-tag experiments and immuno-staining indicate that these loading events occur during S-phase in a manner similar to the nucleosome binding components of the CCAN, CENP-T/W/N. Furthermore, CENP-P/O/R/Q/U binding to the CCAN is largely mediated through interactions with the CENP-N binding protein CENP-L as well as CENP-K. Once assembled, CENP-P/O/R/Q/U exchanges slowly with the free nucleoplasmic pool indicating a low off-rate for individual CENP-P/O/R/Q/U subunits. Surprisingly, we then find that during late S-phase, following the kinetochore-binding step, both CENP-Q and -U but not -R undergo oligomerization. We propose that CENP-P/O/R/Q/U self-assembles on kinetochores with varying stoichiometry and undergoes a pre-mitotic maturation step that could be important for kinetochores switching into the correct conformation necessary for microtubule-attachment.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Cinetocoros/metabolismo , Proteínas Nucleares/metabolismo , Western Blotting , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proteínas Cromossômicas não Histona/genética , Transferência Ressonante de Energia de Fluorescência , Células HeLa , Histonas , Humanos , Proteínas Nucleares/genética
4.
Plasmid ; 51(3): 238-45, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15109830

RESUMO

We have constructed shuttle vectors for integration of genes via double homologous recombination into three ectopic sites on the chromosome of Bacillus subtilis. The sites of integration are the pyrD, gltA, and sacA genes located at 139 degrees, 172 degrees, and 333 degrees, respectively, on the chromosome. Integration of the vectors into the target genes leads to antibiotic resistance as well as different metabolic phenotypes. B. subtilis strains with integrations of the empty vectors were able to sporulate at rates comparable to wild type cells. Similar levels of expression were obtained from constitutive lacZ fusions integrated at the different sites.


Assuntos
Bacillus subtilis/genética , Cromossomos Bacterianos/genética , Expressão Gênica , Vetores Genéticos/genética , Transformação Genética/genética , Sequência de Bases , Cromossomos Bacterianos/metabolismo , Primers do DNA , Genes Reporter/genética , Vetores Genéticos/metabolismo , Dados de Sequência Molecular , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA