Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 9(7): e101753, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25006961

RESUMO

Lithium, an effective antipsychotic, induces nephrogenic diabetes insipidus (NDI) in ∼40% of patients. The decreased capacity to concentrate urine is likely due to lithium acutely disrupting the cAMP pathway and chronically reducing urea transporter (UT-A1) and water channel (AQP2) expression in the inner medulla. Targeting an alternative signaling pathway, such as PKC-mediated signaling, may be an effective method of treating lithium-induced polyuria. PKC-alpha null mice (PKCα KO) and strain-matched wild type (WT) controls were treated with lithium for 0, 3 or 5 days. WT mice had increased urine output and lowered urine osmolality after 3 and 5 days of treatment whereas PKCα KO mice had no change in urine output or concentration. Western blot analysis revealed that AQP2 expression in medullary tissues was lowered after 3 and 5 days in WT mice; however, AQP2 was unchanged in PKCα KO. Similar results were observed with UT-A1 expression. Animals were also treated with lithium for 6 weeks. Lithium-treated WT mice had 19-fold increased urine output whereas treated PKCα KO animals had a 4-fold increase in output. AQP2 and UT-A1 expression was lowered in 6 week lithium-treated WT animals whereas in treated PKCα KO mice, AQP2 was only reduced by 2-fold and UT-A1 expression was unaffected. Urinary sodium, potassium and calcium were elevated in lithium-fed WT but not in lithium-fed PKCα KO mice. Our data show that ablation of PKCα preserves AQP2 and UT-A1 protein expression and localization in lithium-induced NDI, and prevents the development of the severe polyuria associated with lithium therapy.


Assuntos
Diabetes Insípido Nefrogênico/enzimologia , Proteína Quinase C-alfa/genética , Animais , Aquaporina 2/metabolismo , Diabetes Insípido Nefrogênico/induzido quimicamente , Homeostase , Rim/metabolismo , Rim/patologia , Lítio , Masculino , Proteínas de Membrana Transportadoras/metabolismo , Camundongos Knockout , Proteína Quinase C-alfa/metabolismo , Transporte Proteico , Transportadores de Ureia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA