Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Genomics ; 12: 574, 2011 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-22111877

RESUMO

BACKGROUND: Anopheles gambiae is the primary mosquito vector of human malaria parasites in sub-Saharan Africa. To date, three innate immune signaling pathways, including the nuclear factor (NF)-kappaB-dependent Toll and immune deficient (IMD) pathways and the Janus kinase/signal transducers and activators of transcription (Jak-STAT) pathway, have been extensively characterized in An. gambiae. However, in addition to NF-kappaB-dependent signaling, three mitogen-activated protein kinase (MAPK) pathways regulated by JNK, ERK and p38 MAPK are critical mediators of innate immunity in other invertebrates and in mammals. Our understanding of the roles of the MAPK signaling cascades in anopheline innate immunity is limited, so identification of the encoded complement of these proteins, their upstream activators, and phosphorylation profiles in response to relevant immune signals was warranted. RESULTS: In this study, we present the orthologs and phylogeny of 17 An. gambiae MAPKs, two of which were previously unknown and two others that were incompletely annotated. We also provide detailed temporal activation profiles for ERK, JNK, and p38 MAPK in An. gambiae cells in vitro to immune signals that are relevant to malaria parasite infection (human insulin, human transforming growth factor-beta1, hydrogen peroxide) and to bacterial lipopolysaccharide. These activation profiles and possible upstream regulatory pathways are interpreted in light of known MAPK signaling cascades. CONCLUSIONS: The establishment of a MAPK "road map" based on the most advanced mosquito genome annotation can accelerate our understanding of host-pathogen interactions and broader physiology of An. gambiae and other mosquito species. Further, future efforts to develop predictive models of anopheline cell signaling responses, based on iterative construction and refinement of data-based and literature-based knowledge of the MAP kinase cascades and other networked pathways will facilitate identification of the "master signaling regulators" in biomedically important mosquito species.


Assuntos
Anopheles/enzimologia , Anopheles/genética , Proteínas Quinases Ativadas por Mitógeno/genética , Filogenia , Animais , Anopheles/imunologia , Linhagem Celular , Biologia Computacional , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Imunidade Inata , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
2.
Malar J ; 9: 160, 2010 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-20540770

RESUMO

BACKGROUND: Laboratory studies have demonstrated that a variety of immune signaling pathways regulate malaria parasite infection in Anopheles gambiae, the primary vector species in Africa. METHODS: To begin to understand the importance of these associations under natural conditions, an association mapping approach was adopted to determine whether single nucleotide polymorphisms (SNPs) in selected immune signaling genes in A. gambiae collected in Mali were associated with the phenotype of Plasmodium falciparum infection. RESULTS: Three SNPs were identified in field-collected mosquitoes that were associated with parasite infection in molecular form-dependent patterns: two were detected in the Toll5B gene and one was detected in the gene encoding insulin-like peptide 3 precursor. In addition, one infection-associated Toll5B SNP was in linkage disequilibrium with a SNP in sequence encoding a mitogen-activated protein kinase that has been associated with Toll signaling in mammalian cells. Both Toll5B SNPs showed divergence from Hardy-Weinberg equilibrium, suggesting that selection pressure(s) are acting on these loci. CONCLUSIONS: Seven of these eight infection-associated and linked SNPs alter codon frequency or introduce non-synonymous changes that would be predicted to alter protein structure and, hence, function, suggesting that these SNPs could alter immune signaling and responsiveness to parasite infection.


Assuntos
Anopheles/genética , Evolução Molecular , Genes de Insetos/genética , Imunidade Inata/genética , Insetos Vetores/genética , Plasmodium falciparum/patogenicidade , Polimorfismo de Nucleotídeo Único/genética , Animais , Anopheles/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Genótipo , Interações Hospedeiro-Parasita/genética , Interações Hospedeiro-Parasita/imunologia , Insetos Vetores/imunologia , Insetos Vetores/parasitologia , Malária Falciparum/prevenção & controle , Malária Falciparum/transmissão , Mali , Fenótipo , Plasmodium falciparum/imunologia , Reação em Cadeia da Polimerase
3.
Biochem J ; 415(2): 309-16, 2008 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-18588503

RESUMO

No studies have been performed on the mitochondria of malaria vector mosquitoes. This information would be valuable in understanding mosquito aging and detoxification of insecticides, two parameters that have a significant impact on malaria parasite transmission in endemic regions. In the present study, we report the analyses of respiration and oxidative phosphorylation in mitochondria of cultured cells [ASE (Anopheles stephensi Mos. 43) cell line] from A. stephensi, a major vector of malaria in India, South-East Asia and parts of the Middle East. ASE cell mitochondria share many features in common with mammalian muscle mitochondria, despite the fact that these cells are of larval origin. However, two major differences with mammalian mitochondria were apparent. One, the glycerol-phosphate shuttle plays as major a role in NADH oxidation in ASE cell mitochondria as it does in insect muscle mitochondria. In contrast, mammalian white muscle mitochondria depend primarily on lactate dehydrogenase, whereas red muscle mitochondria depend on the malate-oxaloacetate shuttle. Two, ASE mitochondria were able to oxidize proline at a rate comparable with that of alpha-glycerophosphate. However, the proline pathway appeared to differ from the currently accepted pathway, in that oxoglutarate could be catabolized completely by the tricarboxylic acid cycle or via transamination, depending on the ATP need.


Assuntos
Anopheles/metabolismo , Insetos Vetores/metabolismo , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Aminoácidos/metabolismo , Animais , Anopheles/citologia , Antimicina A/farmacologia , Metabolismo dos Carboidratos , Carbonil Cianeto p-Trifluormetoxifenil Hidrazona/farmacologia , Linhagem Celular , Respiração Celular/efeitos dos fármacos , Cromatografia Líquida , Ciclo do Ácido Cítrico , Ácido Glutâmico/metabolismo , Malária/transmissão , Malatos/metabolismo , Oligomicinas/farmacologia , Oxirredução , Fosforilação Oxidativa/efeitos dos fármacos , Consumo de Oxigênio , Ácido Pirúvico/metabolismo , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA