Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Mol Phylogenet Evol ; 166: 107320, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34626810

RESUMO

Evolutionary biologists have long sought to disentangle phylogenetic relationships among taxa spanning the tree of life, an increasingly important task as anthropogenic influences accelerate population declines and species extinctions, particularly in insects. Phylogenetic analyses are commonly used to identify unique evolutionary lineages, to clarify taxonomic designations of the focal taxa, and to inform conservation decisions. Advances in DNA sequencing techniques have increasingly facilitated the ability of researchers to apply genomic methods to phylogenetic analyses, even for non-model organisms. Stoneflies are non-model insects that are important bioindicators of the quality of freshwater habitats and landscape disturbance as they spend the immature stages of their life cycles in fresh water, and the adult stages in terrestrial environments. Phylogenetic relationships within the stonefly genus Suwallia (Insecta: Plecoptera: Chloroperlidae) are poorly understood, and have never been assessed using molecular data. We used DNA sequence data from genome-wide ultraconserved element loci to generate the first molecular phylogeny for the group and assess its monophyly. We found that Palearctic and Nearctic Suwallia do not form reciprocally monophyletic clades, and that a biogeographic history including dispersal, vicariance, and founder event speciation via jump dispersal best explains the geographic distribution of this group. Our results also strongly suggest that Neaviperla forcipata (Neave, 1929) is nested within Suwallia, and the concept of the genus Suwallia should be revised to include it. Thus, we formally propose a new taxonomic combination wherein Neaviperla forcipata (Neave, 1929) is reclassified as Suwallia forcipata (Neave, 1929). Moreover, some Suwallia species (e.g., S. amoenacolens, S. kerzhneri, S. marginata, S. pallidula, and S. starki) exhibit pronounced cryptic diversity that is worthy of further investigation. These findings provide a first glimpse into the evolutionary history of Suwallia, improve our understanding of stonefly diversity in the tribe Suwallini, and highlight areas where additional research is needed.


Assuntos
Genômica , Insetos , Animais , Sequência de Bases , Insetos/genética , Filogenia , Análise de Sequência de DNA
2.
J Anim Ecol ; 90(7): 1764-1775, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33934356

RESUMO

Species pairs that form mutualistic associations are also components of broader organismal community networks. These interaction networks have shaped the evolution of individual mutualisms through interspecific interactions ranging from secondarily mutualistic to intensely antagonistic. Our understanding of this complex context remains limited because characterizing the impacts of species interacting with focal mutualists is often difficult. How is the fitness of mutualists impacted by the co-occurring interactive network of community associates? We investigated this context using a model interaction network comprised of a fig and fig wasp mutualist, eight non-pollinating fig wasp (NPFW) antagonists/commensals and a nematode previously believed to be associated only with the pollinator wasp mutualist. Through repeated sampling and field observations, we characterized the ecological roles of these mutualist-associated organisms to identify key antagonists. We then investigated how potential nematode infection of NPFWs could impact wasp survival across key life stages and, in turn, inferred how this influences the fitness of the fig-pollinator mutualists. Unexpectedly, we found all Ficus petiolaris-associated NPFWs to be the targets for nematode infection, with infection levels sometimes exceeding that of pollinators. Experimental data collected for the most abundant NPFW species suggest that nematode infection significantly reduces their longevity. Further, comparisons of nematode loads for emerging and successfully arriving NPFWs suggest that infection severely limits their dispersal ability. Through these observations, we conclude that this infection could impact NPFWs more severely than either mutualistic partner, suggesting a novel role of density-dependent facultative mutualism between figs, pollinator wasps and the nematode. This antagonist-mediated suppression of other network antagonists may present an ecologically common mechanism through which antagonists can present net benefits for mutualists' fitness.


Assuntos
Ficus , Infecções por Nematoides , Vespas , Animais , Polinização , Simbiose
3.
BMC Evol Biol ; 15: 279, 2015 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-26653183

RESUMO

BACKGROUND: Phylogeographic studies of aquatic insects provide valuable insights into mechanisms that shape the genetic structure of communities, yet studies that include broad geographic areas are uncommon for this group. We conducted a broad scale phylogeographic analysis of the least salmonfly Pteronarcella badia (Plecoptera) across western North America. We tested hypotheses related to mode of dispersal and the influence of historic climate oscillations on population genetic structure. In order to generate a larger mitochondrial data set, we used 454 sequencing to reconstruct the complete mitochondrial genome in the early stages of the project. RESULTS: Our analysis revealed high levels of population structure with several deeply divergent clades present across the sample area. Evidence from five mitochondrial genes and one nuclear locus identified a potentially cryptic lineage in the Pacific Northwest. Gene flow estimates and geographic clade distributions suggest that overland flight during the winged adult stage is an important dispersal mechanism for this taxon. We found evidence of multiple glacial refugia across the species distribution and signs of secondary contact within and among major clades. CONCLUSIONS: This study provides a basis for future studies of aquatic insect phylogeography at the inter-basin scale in western North America. Our findings add to an understanding of the role of historical climate isolations in shaping assemblages of aquatic insects in this region. We identified several geographic areas that may have historical importance for other aquatic organisms with similar distributions and dispersal strategies as P. badia. This work adds to the ever-growing list of studies that highlight the potential of next-generation DNA sequencing in a phylogenetic context to improve molecular data sets from understudied groups.


Assuntos
Insetos/genética , Animais , Clima , DNA Mitocondrial/genética , Fluxo Gênico , Variação Genética , Genética Populacional , Insetos/classificação , Dados de Sequência Molecular , América do Norte , Noroeste dos Estados Unidos , Filogeografia , Refúgio de Vida Selvagem
4.
BMC Evol Biol ; 14: 111, 2014 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-24885371

RESUMO

BACKGROUND: Biogeographers seek to understand the influences of global climate shifts and geologic changes to the landscape on the ecology and evolution of organisms. Across both longer and shorter timeframes, the western North American landscape has experienced dynamic transformations related to various geologic processes and climatic oscillations, including events as recently as the Last Glacial Maximum (LGM; ~20 Ka) that have impacted the evolution of the North American biota. Redside shiner is a cyprinid species that is widely distributed throughout western North America. The species' native range includes several well-documented Pleistocene refugia. Here we use mitochondrial DNA sequence data to assess phylogeography, and to test two biogeographic hypotheses regarding post-glacial colonization by redside shiner: 1) Redside shiner entered the Bonneville Basin at the time of the Bonneville Flood (Late Pleistocene; 14.5 Ka), and 2) redside shiner colonized British Columbia post-glacially from a single refugium in the Upper Columbia River drainage. RESULTS: Genetic diversification in redside shiner began in the mid to late Pleistocene, but was not associated with LGM. Different clades of redside shiner were distributed in multiple glacial age refugia, and each clade retains a signature of population expansion, with clades having secondary contact in some areas. CONCLUSIONS: Divergence times between redside shiner populations in the Bonneville Basin and the Upper Snake/Columbia River drainage precedes the Bonneville Flood, thus it is unlikely that redside shiner invaded the Bonneville Basin during this flooding event. All but one British Columbia population of redside shiner are associated with the Upper Columbia River drainage with the lone exception being a population near the coast, suggesting that the province as a whole was colonized from multiple refugia, but the inland British Columbia redside shiner populations are affiliated with a refugium in the Upper Columbia River drainage.


Assuntos
Cyprinidae/genética , Filogenia , Animais , Evolução Biológica , Colúmbia Britânica , Clima , DNA Mitocondrial/genética , Deriva Genética , Filogeografia
5.
BMC Genomics ; 13: 724, 2012 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-23259499

RESUMO

BACKGROUND: Salmonids are popular sport fishes, and as such have been subjected to widespread stocking throughout western North America. Historically, stocking was done with little regard for genetic variation among populations and has resulted in genetic mixing among species and subspecies in many areas, thus putting the genetic integrity of native salmonid populations at risk and creating a need to assess the genetic constitution of native salmonid populations. Cutthroat trout is a salmonid species with pronounced geographic structure (there are 10 extant subspecies) and a recent history of hybridization with introduced rainbow trout in many populations. Genetic admixture has also occurred among cutthroat trout subspecies in areas where introductions have brought two or more subspecies into contact. Consequently, management agencies have increased their efforts to evaluate the genetic composition of cutthroat trout populations to identify populations that remain uncompromised and manage them accordingly, but additional genetic markers are needed to do so effectively. Here we used genome reduction, MID-barcoding, and 454-pyrosequencing to discover single nucleotide polymorphisms that differentiate cutthroat trout subspecies and can be used as a rapid, cost-effective method to characterize the genetic composition of cutthroat trout populations. RESULTS: Thirty cutthroat and six rainbow trout individuals were subjected to genome reduction and next-generation sequencing. A total of 1,499,670 reads averaging 379 base pairs in length were generated by 454-pyrosequencing, resulting in 569,060,077 total base pairs sequenced. A total of 43,558 putative SNPs were identified, and of those, 125 SNP primers were developed that successfully amplified 96 cutthroat trout and rainbow trout individuals. These SNP loci were able to differentiate most cutthroat trout subspecies using distance methods and Structure analyses. CONCLUSIONS: Genomic and bioinformatic protocols were successfully implemented to identify 125 nuclear SNPs that are capable of differentiating most subspecies of cutthroat trout from one another. The ability to use this suite of SNPs to identify individuals of unknown genetic background to subspecies can be a valuable tool for management agencies in their efforts to evaluate the genetic structure of cutthroat trout populations prior to constructing and implementing conservation plans.


Assuntos
Código de Barras de DNA Taxonômico/métodos , Genoma/genética , Genômica/métodos , Hibridização Genética , Oncorhynchus/genética , Polimorfismo de Nucleotídeo Único/genética , Animais , Sequência de Bases , Biologia Computacional , Pesqueiros/métodos , Sequenciamento de Nucleotídeos em Larga Escala , Dados de Sequência Molecular
6.
Ecol Lett ; 15(11): 1318-1325, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22909289

RESUMO

The Tropical Niche Conservatism hypothesis is a leading explanation for why biodiversity increases towards the equator. The model suggests that most lineages have tropical origins, with few dispersing into temperate regions. However, biotas are comprised of lineages with differing geographical origins, thus it is unclear whether lineages that originated on different continents will exhibit similar patterns of niche conservatism. Here, we summarised biogeographical patterns of New World vertebrates and compared species diversity patterns between families that originated in North and South America. Overall, families with southern origins exhibit niche conservatism with many lineages restricted to the Neotropics, whereas many northern-origin families are distributed across the Neotropics and the Nearctic. Consequently, northern lineages have contributed to high tropical biodiversity, but southern lineages have contributed relatively little to temperate biodiversity in North America. The asymmetry in niche conservatism between northern and southern lineages is an important contributor to the biodiversity gradient.


Assuntos
Biodiversidade , Vertebrados , América , Animais , Evolução Biológica , Ecologia , Clima Tropical
7.
Mol Phylogenet Evol ; 55(1): 259-273, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19874904

RESUMO

Diversification of many North American taxa, including freshwater fishes, has been heavily influenced by the effects of complex geological and climatic events throughout the Cenozoic that have significantly altered the landscape. Here, we employ an array of phylogenetic analyses using a multiple gene tree approach to address several questions regarding the phylogenetic relationships of the North American cyprinid genus Richardsonius and two other closely related genera, Clinostomus and Iotichthys. We also use divergence time estimates generated using fossil calibrations to qualitatively assess the phylogeographic implications of evolution within the group. Mitochondrial and nuclear DNA sequences show a sister relationship between Iotichthys and Richardsonius, with Clinostomus being sister to an Iotichthys-Richardsonius clade, hence the currently recognized sister relationship between Clinostomus and Richardsonius is not supported. These genera appear to be monophyletic lineages, and sister species within genera appear to be reciprocally monophyletic. The two species within the genus Richardsonius both exhibit phylogeographic structure that is worthy of further investigation. Divergence time estimates between genera and species are Miocene or Pliocene in age, and divergence between phylogroups within species occurred in the late Pliocene to Pleistocene. These splits coincide with documented geological and climatic events.


Assuntos
Cyprinidae/genética , Evolução Molecular , Filogenia , Animais , Teorema de Bayes , Núcleo Celular/genética , Cyprinidae/classificação , DNA Mitocondrial/genética , Fósseis , Geografia , Modelos Genéticos , América do Norte , Alinhamento de Sequência , Análise de Sequência de DNA
8.
PeerJ ; 5: e4060, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29255648

RESUMO

BACKGROUND: Avian influenza virus (AIV) infections occur naturally in wild bird populations and can cross the wildlife-domestic animal interface, often with devastating impacts on commercial poultry. Migratory waterfowl and shorebirds are natural AIV reservoirs and can carry the virus along migratory pathways, often without exhibiting clinical signs. However, these species rarely inhabit poultry farms, so transmission into domestic birds likely occurs through other means. In many cases, human activities are thought to spread the virus into domestic populations. Consequently, biosecurity measures have been implemented to limit human-facilitated outbreaks. The 2015 avian influenza outbreak in the United States, which occurred among poultry operations with strict biosecurity controls, suggests that alternative routes of virus infiltration may exist, including bridge hosts: wild animals that transfer virus from areas of high waterfowl and shorebird densities. METHODS: Here, we examined small, wild birds (songbirds, woodpeckers, etc.) and mammals in Iowa, one of the regions hit hardest by the 2015 avian influenza epizootic, to determine whether these animals carry AIV. To assess whether influenza A virus was present in other species in Iowa during our sampling period, we also present results from surveillance of waterfowl by the Iowa Department of Natural Resources and Unites Stated Department of Agriculture. RESULTS: Capturing animals at wetlands and near poultry facilities, we swabbed 449 individuals, internally and externally, for the presence of influenza A virus and no samples tested positive by qPCR. Similarly, serology from 402 animals showed no antibodies against influenza A. Although several species were captured at both wetland and poultry sites, the overall community structure of wild species differed significantly between these types of sites. In contrast, 83 out of 527 sampled waterfowl tested positive for influenza A via qPCR. DISCUSSION: These results suggest that even though influenza A viruses were present on the Iowa landscape at the time of our sampling, small, wild birds and rodents were unlikely to be frequent bridge hosts.

9.
PLoS One ; 10(9): e0138433, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26394395

RESUMO

Changing drainage patterns have played a significant role in the evolution of western North American aquatic taxa. Relict dace, Relictus solitarius, is a Great Basin endemic cyprinid with a native range that is restricted to four valleys in eastern Nevada. Relictus solitarius now occupies spring systems that are the remnants of Pleistocene-era pluvial lakes, although it may have occurred in the area for much longer. Here we use mitochondrial DNA sequence data to assess range-wide genetic diversity of R. solitarius, and to estimate divergence times to determine whether pluvial drainages played an important role in shaping intraspecific genetic diversity. Genetic diversification within R. solitarius began during the early to mid-Pleistocene, separating populations within two sets of valleys (Butte/Ruby and Goshute/Steptoe). Additional diversification in each of the two sets of valleys occurred more recently, in the mid- to late-Pleistocene. Holocene desiccation has further isolated populations, and each population sampled contains unique mtDNA haplotypes. Pluvial drainage patterns did contribute to the genetic structure observed within R. solitarius, but most of the intraspecific diversification does not appear to be associated with the Last Glacial Maximum. Holocene desiccation has also contributed to the observed genetic structure. The relict dace populations we sampled are all unique, and we recommend that future management efforts should strive to preserve as much of the genetic diversity as possible.


Assuntos
Cyprinidae/genética , Variação Genética , Animais , Sequência de Bases , Evolução Biológica , Cyprinidae/classificação , DNA Mitocondrial/análise , DNA Mitocondrial/genética , DNA Mitocondrial/isolamento & purificação , Haplótipos , Lagos , Dados de Sequência Molecular , Nevada , Filogenia , Análise de Sequência de DNA
10.
Appl Plant Sci ; 3(7)2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-26191464

RESUMO

PREMISE OF THE STUDY: Single-nucleotide polymorphism (SNP) primers were developed for a native North American desert fig, Ficus petiolaris (Moraceae), to provide markers for population genetic studies designed to quantify patterns of gene flow across a complex landscape. METHODS AND RESULTS: Transcriptome sequencing and bioinformatic protocols were implemented to discover SNPs in single-copy protein-coding genes. Multiplexes of 30 nuclear and 24 organellar (chloroplast and mitochondrial) SNPs were selected for primer development and genotyping on the Sequenom MASSArray System. Of these 54 loci, 49 reliably amplified across a panel of 96 F. petiolaris individuals. CONCLUSIONS: This study has provided SNP primers that can be applied in future studies investigating population genetics of F. petiolaris and its coevolution with associated pollinating and nonpollinating fig wasps.

11.
Am Nat ; 160(6): 803-8, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18707466
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA