Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
J Lipid Res ; 63(1): 100157, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34863862

RESUMO

High levels of circulating triglycerides (TGs), or hypertriglyceridemia, are key components of metabolic diseases, such as type 2 diabetes, metabolic syndrome, and CVD. As TGs are carried by lipoproteins in plasma, hypertriglyceridemia can result from overproduction or lack of clearance of TG-rich lipoproteins (TRLs) such as VLDLs. The primary driver of TRL clearance is TG hydrolysis mediated by LPL. LPL is regulated by numerous TRL protein components, including the cofactor apolipoprotein C-II, but it is not clear how their effects combine to impact TRL hydrolysis across individuals. Using a novel assay designed to mimic human plasma conditions in vitro, we tested the ability of VLDL from 15 normolipidemic donors to act as substrates for human LPL. We found a striking 10-fold difference in hydrolysis rates across individuals when the particles were compared on a protein or a TG basis. While VLDL TG contents moderately correlated with hydrolysis rate, we noticed substantial variations in non-apoB proteins within these particles by MS. The ability of LPL to hydrolyze VLDL TGs did not correlate with apolipoprotein C-II content, but it was strongly inversely correlated with apolipoprotein E (APOE) and, to a lesser extent, apolipoprotein A-II. Addition of exogenous APOE inhibited LPL lipolysis in a dose-dependent manner. The APOE3 and (particularly) APOE4 isoforms were effective at limiting LPL hydrolysis, whereas APOE2 was not. We conclude that APOE on VLDL modulates LPL activity and could be a relevant factor in the pathogenesis of metabolic disease.


Assuntos
Diabetes Mellitus Tipo 2
2.
Gastroenterology ; 151(5): 923-932, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27436071

RESUMO

BACKGROUND & AIMS: The gut microbiota affects intestinal permeability and mucosal mast cells (MMCs) responses. Activation of MMCs has been associated with absorption of dietary fat. We investigated whether the gut microbiota contributes to the fat-induced activation of MMCs in rats, and how antibiotics might affect this process. METHODS: Adult male Sprague-Dawley rats were given streptomycin and penicillin for 4 days (n = 6-8) to reduce the abundance of their gut flora, or normal drinking water (controls, n = 6-8). They underwent lymph fistula surgery and after an overnight recovery were given an intraduodenal bolus of intralipid. We collected intestinal tissues and lymph fluid and assessed activation of MMCs, intestinal permeability, and fat transport parameters. RESULTS: Compared with controls, intestinal lymph from rats given antibiotics had reduced levels of mucosal mast cell protease II (produced by MMCs) and decreased activity of diamine oxidase (produced by enterocytes) (P < .05). Rats given antibiotics had reduced intestinal permeability in response to dietary lipid compared with controls (P < .01). Unexpectedly, antibiotics also reduced lymphatic transport of triacylglycerol and phospholipid (P < .01), concomitant with decreased levels of mucosal apolipoproteins B, A-I, and A-IV (P < .01). No differences were found in intestinal motility or luminal pancreatic lipase activity between rats given antibiotics and controls. These effects were not seen with an acute dose of antibiotics or 4 weeks after the antibiotic regimen ended. CONCLUSIONS: The intestinal microbiota appears to activate MMCs after the ingestion of fat in rats; this contributes to fat-induced intestinal permeability. We found that the gut microbiome promotes absorption of lipid, probably by intestinal production of apolipoproteins and secretion of chylomicrons.


Assuntos
Antibacterianos/farmacologia , Gorduras na Dieta/metabolismo , Absorção Intestinal/efeitos dos fármacos , Mucosa Intestinal/efeitos dos fármacos , Mastócitos/efeitos dos fármacos , Penicilinas/farmacologia , Estreptomicina/farmacologia , Animais , Antibacterianos/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Microbioma Gastrointestinal/fisiologia , Absorção Intestinal/imunologia , Mucosa Intestinal/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiologia , Masculino , Mastócitos/metabolismo , Mastócitos/microbiologia , Penicilinas/administração & dosagem , Permeabilidade , Ratos , Ratos Sprague-Dawley , Estreptomicina/administração & dosagem
3.
J Lipid Res ; 56(8): 1403-18, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25640749

RESUMO

The purpose of this review is to summarize our current understanding of the physiological roles of apoA-IV in metabolism, and to underscore the potential for apoA-IV to be a focus for new therapies aimed at the treatment of diabetes and obesity-related disorders. ApoA-IV is primarily synthesized by the small intestine, attached to chylomicrons by enterocytes, and secreted into intestinal lymph during fat absorption. In circulation, apoA-IV is associated with HDL and chylomicron remnants, but a large portion is lipoprotein free. Due to its anti-oxidative and anti-inflammatory properties, and because it can mediate reverse-cholesterol transport, proposed functions of circulating apoA-IV have been related to protection from cardiovascular disease. This review, however, focuses primarily on several properties of apoA-IV that impact other metabolic functions related to food intake, obesity, and diabetes. In addition to participating in triglyceride absorption, apoA-IV can act as an acute satiation factor through both peripheral and central routes of action. It also modulates glucose homeostasis through incretin-like effects on insulin secretion, and by moderating hepatic glucose production. While apoA-IV receptors remain to be conclusively identified, the latter modes of action suggest that this protein holds therapeutic promise for treating metabolic disease.


Assuntos
Apolipoproteínas A/metabolismo , Metabolismo , Animais , Cirurgia Bariátrica , Regulação da Expressão Gênica , Humanos
4.
Am J Physiol Gastrointest Liver Physiol ; 308(7): G634-42, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25617349

RESUMO

Apolipoprotein A-V (apoA-V), a liver-synthesized apolipoprotein discovered in 2001, strongly modulates fasting plasma triglycerides (TG). Little is reported on the effect of apoA-V on postprandial plasma TG, an independent predictor for atherosclerosis. Overexpressing apoA-V in mice suppresses postprandial TG, but mechanisms focus on increased lipolysis or clearance of remnant particles. Unknown is whether apoA-V suppresses the absorption of dietary lipids by the gut. This study examines how apoA-V deficiency affects the steady-state absorption and lymphatic transport of dietary lipids in chow-fed mice. Using apoA-V knockout (KO, n = 8) and wild-type (WT, n = 8) lymph fistula mice, we analyzed the uptake and lymphatic transport of lipids during a continuous infusion of an emulsion containing [(3)H]triolein and [(14)C]cholesterol. ApoA-V KO mice showed a twofold increase in (3)H (P < 0.001) and a threefold increase in (14)C (P < 0.001) transport into the lymph compared with WT. The increased lymphatic transport was accompanied by a twofold reduction (P < 0.05) in mucosal (3)H, suggesting that apoA-V KO mice more rapidly secreted [(3)H]TG out of the mucosa into the lymph. ApoA-V KO mice also produced chylomicrons more rapidly than WT (P < 0.05), as measured by the transit time of [(14)C]oleic acid from the intestinal lumen to lymph. Interestingly, apoA-V KO mice produced a steadily increasing number of chylomicron particles over time, as measured by lymphatic apoB output. The data suggest that apoA-V suppresses the production of chylomicrons, playing a previously unknown role in lipid metabolism that may contribute to the postprandial hypertriglyceridemia associated with apoA-V deficiency.


Assuntos
Apolipoproteínas/deficiência , Quilomícrons/metabolismo , Duodeno/metabolismo , Fístula/metabolismo , Linfa/metabolismo , Doenças Linfáticas/metabolismo , Sistema Linfático/metabolismo , Administração Oral , Animais , Apolipoproteína A-V , Apolipoproteínas/genética , Colesterol/administração & dosagem , Colesterol/metabolismo , Modelos Animais de Doenças , Fístula/genética , Absorção Intestinal , Doenças Linfáticas/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Período Pós-Prandial , Fatores de Tempo , Trioleína/administração & dosagem , Trioleína/metabolismo , Regulação para Cima
5.
Am J Physiol Gastrointest Liver Physiol ; 309(11): G918-25, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26505974

RESUMO

Apolipoprotein (apo) A-V is a protein synthesized only in the liver that dramatically modulates plasma triglyceride levels. Recent studies suggest a novel role for hepatic apoA-V in regulating the absorption of dietary triglycerides, but its mode of action on the gut remains unknown. The aim of this study was to test for apoA-V in bile and to determine whether its secretion is regulated by dietary lipids. After an overnight recovery, adult male Sprague-Dawley bile fistula rats indeed secreted apoA-V into bile at a constant rate under fasting conditions. An intraduodenal bolus of intralipid (n = 12) increased the biliary secretion of apoA-V but not of other apolipoproteins, such as A-I, A-IV, B, and E. The lipid-induced increase of biliary apoA-V was abolished under conditions of poor lymphatic lipid transport, suggesting that the stimulation is regulated by the magnitude of lipids associated with chylomicrons transported into lymph. We also studied the secretion of apoA-V into bile immediately following bile duct cannulation. Biliary apoA-V increased over time (∼6-fold increase at hour 16, n = 8) but the secretions of other apolipoproteins remained constant. Replenishing luminal phosphatidylcholine and taurocholate (n = 9) only enhanced apoA-V secretion in bile, suggesting that the increase was not due to depletion of phospholipids or bile salts. This is the first study to demonstrate that apoA-V is secreted into bile, introducing a potential route of delivery of hepatic apoA-V to the gut lumen. Our study also reveals the uniqueness of apoA-V secretion into bile that is regulated by mechanisms different from other apolipoproteins.


Assuntos
Apolipoproteínas/metabolismo , Bile/metabolismo , Fístula Biliar/metabolismo , Duodeno/metabolismo , Absorção Intestinal , Fígado/metabolismo , Fosfolipídeos/metabolismo , Óleo de Soja/metabolismo , Animais , Apolipoproteína A-V , Quilomícrons/metabolismo , Modelos Animais de Doenças , Emulsões/administração & dosagem , Emulsões/metabolismo , Jejum/metabolismo , Fígado/efeitos dos fármacos , Linfa/metabolismo , Masculino , Fosfatidilcolinas/farmacologia , Fosfolipídeos/administração & dosagem , Ratos Sprague-Dawley , Óleo de Soja/administração & dosagem , Ácido Taurocólico/farmacologia , Fatores de Tempo , Regulação para Cima
6.
Arch Biochem Biophys ; 588: 25-32, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26541319

RESUMO

Both sterol carrier protein-2/sterol carrier protein-x (SCP-2/SCP-x) and liver fatty acid binding protein (L-FABP) have been proposed to function in hepatobiliary bile acid metabolism/accumulation. To begin to address this issue, the impact of ablating L-FABP (LKO) or SCP-2/SCP-x (DKO) individually or both together (TKO) was examined in female mice. Biliary bile acid levels were decreased in LKO, DKO, and TKO mice; however, hepatic bile acid concentration was decreased in LKO mice only. In contrast, biliary phospholipid level was decreased only in TKO mice, while biliary cholesterol levels were unaltered regardless of phenotype. The loss of either or both genes increased hepatic expression of the major bile acid synthetic enzymes (CYP7A1 and/or CYP27A1). Loss of L-FABP and/or SCP-2/SCP-x genes significantly altered the molecular composition of biliary bile acids, but not the proportion of conjugated/unconjugated bile acids or overall bile acid hydrophobicity index. These data suggested that L-FABP was more important in hepatic retention of bile acids, while SCP-2/SCP-x more broadly affected biliary bile acid and phospholipid levels.


Assuntos
Sistema Biliar/metabolismo , Proteínas de Transporte/metabolismo , Proteínas de Ligação a Ácido Graxo/metabolismo , Fígado/metabolismo , Animais , Ácidos e Sais Biliares/química , Ácidos e Sais Biliares/metabolismo , Proteínas de Transporte/genética , Colesterol/metabolismo , Proteínas de Ligação a Ácido Graxo/deficiência , Proteínas de Ligação a Ácido Graxo/genética , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Fosfolipídeos/metabolismo
7.
Am J Physiol Gastrointest Liver Physiol ; 307(11): G1130-43, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25277800

RESUMO

On the basis of their abilities to bind bile acids and/or cholesterol, the physiological role(s) of liver fatty acid-binding protein (L-FABP) and sterol carrier protein (SCP) 2/SCP-x (SCP-2/SCP-x) gene products in biliary bile acid and cholesterol formation was examined in gene-ablated male mice. L-FABP (LKO) or L-FABP/SCP-2/SCP-x [triple-knockout (TKO)] ablation markedly decreased hepatic bile acid concentration, while SCP-2/SCP-x [double-knockout (DKO)] ablation alone had no effect. In contrast, LKO increased biliary bile acid, while DKO and TKO had no effect on biliary bile acid levels. LKO and DKO also altered biliary bile acid composition to increase bile acid hydrophobicity. Furthermore, LKO and TKO decreased hepatic uptake and biliary secretion of high-density lipoprotein (HDL)-derived 22-(N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)amino)-23,24-bisnor-5-cholen-3ß-ol (NBD-cholesterol), while DKO alone had no effect. Finally, LKO and, to a lesser extent, DKO decreased most indexes contributing to cholesterol solubility in biliary bile. These results suggest different, but complementary, roles for L-FABP and SCP-2/SCP-x in biliary bile acid and cholesterol formation. L-FABP appears to function more in hepatic retention of bile acids as well as hepatic uptake and biliary secretion of HDL-cholesterol. Conversely, SCP-2/SCP-x may function more in formation and biliary secretion of bile acid, with less impact on hepatic uptake or biliary secretion of HDL-cholesterol.


Assuntos
Ácidos e Sais Biliares/metabolismo , Bile/metabolismo , Proteínas de Transporte/fisiologia , HDL-Colesterol/metabolismo , Proteínas de Ligação a Ácido Graxo/fisiologia , Animais , Proteínas de Transporte/genética , Colesterol/metabolismo , Proteínas de Ligação a Ácido Graxo/genética , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosfolipídeos/metabolismo
8.
J Lipid Res ; 54(5): 1430-8, 2013 May.
Artigo em Inglês | MEDLINE | ID: mdl-23434611

RESUMO

Ginsenoside Rb1 (Rb1), a natural compound extracted from ginseng, exerts anti-obesity activity and improves insulin sensitivity in high-fat diet (HFD)-induced obese rats. The objective of the current study was to evaluate the protective effect of Rb1 on fatty liver in HFD-induced obese rats and to elucidate underlying mechanisms. After chronic intraperitoneal administration, Rb1 (10 mg/kg) significantly ameliorated hepatic fat accumulation in HFD-induced obese rats, as demonstrated by reduced liver weight, hepatic triglyceride content, and histological evaluation of liver sections by hematoxylin and eosin and Oil Red O staining. Using primary cultured rat hepatic cells, we found that the rate of fatty acid oxidation and the activity of carnitine palmitoyltransferase 1 (CPT1), a key enzyme in fatty acid ß-oxidation, were significantly elevated in Rb1-treated hepatocytes compared with those of vehicle-treated cells. HPLC analysis revealed that Rb1 increased the cellular AMP/ATP ratio, which is associated with elevated activation of hepatic AMP-activated protein kinase (AMPK) and phosphorylated acetyl-CoA carboxylase. Consistent with the activation of AMPK, Rb1 stimulated the expression of genes encoding fatty acid oxidative enzymes and proteins, and suppressed the expression of genes encoding enzymes or proteins that function in lipogenesis, assessed by quantitative PCR. We conclude that Rb1 has a potent ability to reduce hepatic fat accumulation and might be useful as a therapeutic agent for fatty liver disorder.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Ginsenosídeos/administração & dosagem , Obesidade/tratamento farmacológico , Obesidade/metabolismo , Animais , Dieta Hiperlipídica , Corpo Adiposo/efeitos dos fármacos , Corpo Adiposo/metabolismo , Fígado Gorduroso/tratamento farmacológico , Metabolismo dos Lipídeos/efeitos dos fármacos , Lipogênese/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Masculino , Obesidade/patologia , Ratos
9.
J Biol Chem ; 286(15): 13079-87, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21343303

RESUMO

The low density lipoprotein receptor-related protein-1 (LRP1) is known to serve as a chylomicron remnant receptor in the liver responsible for the binding and plasma clearance of apolipoprotein E-containing lipoproteins. Previous in vitro studies have provided evidence to suggest that LRP1 expression may also influence high density lipoprotein (HDL) metabolism. The current study showed that liver-specific LRP1 knock-out (hLrp1(-/-)) mice displayed lower fasting plasma HDL cholesterol levels when compared with hLrp1(+/+) mice. Lecithin:cholesterol acyl transferase and hepatic lipase activities in plasma of hLrp1(-/-) mice were comparable with those observed in hLrp1(+/+) mice, indicating that hepatic LRP1 inactivation does not influence plasma HDL remodeling. Plasma clearance of HDL particles and HDL-associated cholesteryl esters was also similar between hLrp1(+/+) and hLrp1(-/-) mice. In contrast, HDL secretion from primary hepatocytes isolated from hLrp1(-/-) mice was significantly reduced when compared with that observed with hLrp1(+/+) hepatocytes. Biotinylation of cell surface proteins revealed decreased surface localization of the ATP-binding cassette, subfamily A, member 1 (ABCA1) protein, but total cellular ABCA1 level was not changed in hLrp1(-/-) hepatocytes. Finally, hLrp1(-/-) hepatocytes displayed reduced binding capacity for extracellular cathepsin D, resulting in lower intracellular cathepsin D content and impairment of prosaposin activation, a process that is required for membrane translocation of ABCA1 to facilitate cholesterol efflux and HDL secretion. Taken together, these results documented that hepatic LRP1 participates in cellular activation of lysosomal enzymes and through this mechanism, indirectly modulates the production and plasma levels of HDL.


Assuntos
Membrana Celular/metabolismo , Hepatócitos/metabolismo , Lipoproteínas HDL/sangue , Fígado/metabolismo , Lisossomos/metabolismo , Receptores de LDL/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Catepsina D/genética , Catepsina D/metabolismo , Membrana Celular/genética , Jejum/sangue , Lipase/genética , Lipase/metabolismo , Lipoproteínas HDL/genética , Proteína-1 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Lisossomos/genética , Camundongos , Camundongos Knockout , Fosfatidilcolina-Esterol O-Aciltransferase/genética , Fosfatidilcolina-Esterol O-Aciltransferase/metabolismo , Transporte Proteico/fisiologia , Receptores de LDL/genética , Saposinas/genética , Saposinas/metabolismo , Proteínas Supressoras de Tumor/genética
10.
FASEB J ; 25(4): 1370-7, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21212359

RESUMO

Mechanisms to increase reverse cholesterol transport (RCT) and biliary sterol disposal are currently sought to prevent atherosclerosis. Previous work with HepG2 cells and primary hepatocytes showed that carboxyl ester lipase (CEL), a broad-spectrum lipase secreted by pancreas and liver, plays an important role in hydrolysis of high-density lipoprotein (HDL) cholesteryl esters (CEs) after selective uptake by hepatocytes. The effect of CEL on RCT of HDL cholesterol was assessed by measuring biliary and fecal disposal of radiolabeled HDL-CE in control and Cel(-/-) mice. Radiolabeled CE was increased 3-fold in hepatic bile of Cel(-/-) mice, and the mass of CE in gall bladder bile was elevated. Total radiolabeled transport from plasma to hepatic bile was more rapid in Cel(-/-) mice. Fecal disposal of radiolabel from HDL-CE, as well as total sterol mass, was markedly elevated for Cel(-/-) mice, primarily due to more CE. RCT of macrophage CE was also increased in Cel(-/-) mice, as measured by excretion of radiolabel from injected J774 cells. Increased sterol loss was compensated by increased cholesterol synthesis in Cel(-/-) mice. Together, the data demonstrate significantly increased RCT in the absence of CEL and suggest a novel mechanism by which to manipulate plasma cholesterol flux.


Assuntos
Bile/metabolismo , Carboxilesterase/deficiência , HDL-Colesterol/metabolismo , Colesterol/metabolismo , Animais , Transporte Biológico , Carboxilesterase/genética , Fezes/química , Masculino , Camundongos , Camundongos Knockout
11.
J Clin Invest ; 117(11): 3475-88, 2007 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17885689

RESUMO

Disruptions of the melanocortin signaling system have been linked to obesity. We investigated a possible role of the central nervous melanocortin system (CNS-Mcr) in the control of adiposity through effects on nutrient partitioning and cellular lipid metabolism independent of nutrient intake. We report that pharmacological inhibition of melanocortin receptors (Mcr) in rats and genetic disruption of Mc4r in mice directly and potently promoted lipid uptake, triglyceride synthesis, and fat accumulation in white adipose tissue (WAT), while increased CNS-Mcr signaling triggered lipid mobilization. These effects were independent of food intake and preceded changes in adiposity. In addition, decreased CNS-Mcr signaling promoted increased insulin sensitivity and glucose uptake in WAT while decreasing glucose utilization in muscle and brown adipose tissue. Such CNS control of peripheral nutrient partitioning depended on sympathetic nervous system function and was enhanced by synergistic effects on liver triglyceride synthesis. Our findings offer an explanation for enhanced adiposity resulting from decreased melanocortin signaling, even in the absence of hyperphagia, and are consistent with feeding-independent changes in substrate utilization as reflected by respiratory quotient, which is increased with chronic Mcr blockade in rodents and in humans with loss-of-function mutations in MC4R. We also reveal molecular underpinnings for direct control of the CNS-Mcr over lipid metabolism. These results suggest ways to design more efficient pharmacological methods for controlling adiposity.


Assuntos
Sistema Nervoso Central/metabolismo , Metabolismo dos Lipídeos , Melanocortinas/metabolismo , Transdução de Sinais/fisiologia , Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Comportamento Animal/fisiologia , Ingestão de Alimentos , Glucose/metabolismo , Humanos , Insulina/metabolismo , Hormônios Estimuladores de Melanócitos/administração & dosagem , Hormônios Estimuladores de Melanócitos/metabolismo , Camundongos , Camundongos Knockout , Ratos , Ratos Sprague-Dawley , Receptor Tipo 4 de Melanocortina/genética , Receptor Tipo 4 de Melanocortina/metabolismo , Receptores de Melanocortina , alfa-MSH/administração & dosagem , alfa-MSH/análogos & derivados , alfa-MSH/metabolismo
12.
Am J Physiol Gastrointest Liver Physiol ; 299(5): G1003-11, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20651007

RESUMO

Ezetimibe is a potent inhibitor of cholesterol absorption by enterocytes. Although ezetimibe minimally affects the absorption of triglyceride, it is unknown whether ezetimibe affects the secretion of the incretin hormones glucose-dependent insulinotropic polypeptide (GIP) and glucagon-like peptide-1 (GLP-1). It has been shown that ezetimibe-treated mice are protected from diet-induced insulin resistance. Since GIP and GLP-1 promote the actions of insulin, we hypothesized that ezetimibe may affect the secretion of GIP and GLP-1 by enteroendocrine cells into lymph in response to the intestinal absorption of a mixed meal (Ensure). To test this hypothesis, we used the lymph fistula rat model to determine GIP and GLP-1 concentrations in lymph during the 2 h after the infusion of Ensure. Ezetimibe significantly reduced lymphatic cholesterol output during fasting, without coincident decreases in glucose, protein, and triglyceride outputs. However, ezetimibe did not influence cholesterol output after infusion of Ensure. Interestingly, ezetimibe significantly reduced the secretion of both GIP and GLP-1 into lymph after the infusion of Ensure. Therefore, the inhibitory effect of ezetimibe on GIP and GLP-1 secretion by enteroendocrine cells occurs outside of the effects of glucose, protein, or triglyceride secretion by the intestine.


Assuntos
Azetidinas/farmacologia , Células Enteroendócrinas/efeitos dos fármacos , Células Enteroendócrinas/metabolismo , Polipeptídeo Inibidor Gástrico/metabolismo , Peptídeo 1 Semelhante ao Glucagon/metabolismo , Absorção Intestinal , Análise de Variância , Animais , Colesterol/análise , Colesterol/metabolismo , Sacarose Alimentar/administração & dosagem , Ensaio de Imunoadsorção Enzimática , Ezetimiba , Alimentos Formulados , Polipeptídeo Inibidor Gástrico/análise , Peptídeo 1 Semelhante ao Glucagon/análise , Linfa/química , Masculino , Ratos , Ratos Sprague-Dawley
13.
Biochim Biophys Acta ; 1771(9): 1132-9, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17442616

RESUMO

Recent studies have documented the importance of Niemann-Pick C1-like 1 protein (NPC1L1), a putative physiological target of the drug ezetimibe, in mediating intestinal cholesterol absorption. However, whether NPC1L1 is the high affinity cholesterol binding protein on intestinal brush border membranes is still controversial. In this study, brush border membrane vesicles (BBMV) from wild type and NPC1L1-/- mice were isolated and assayed for micellar cholesterol binding in the presence or absence of ezetimibe. Results confirmed the loss of the high affinity component of cholesterol binding when wild type BBMV preparations were incubated with antiserum against the class B type 1 scavenger receptor (SR-BI) in the reaction mixture similar to previous studies. Subsequently, second order binding of cholesterol was observed with BBMV from wild type and NPC1L1-/- mice. The inclusion of ezetimibe in these in vitro reaction assays resulted in the loss of the high affinity component of cholesterol interaction. Surprisingly, BBMVs from NPC1L1-/- mice maintained active binding of cholesterol. These results documented that SR-BI, not NPC1L1, is the major protein responsible for the initial high affinity cholesterol ligand binding process in the cholesterol absorption pathway. Additionally, ezetimibe may inhibit BBM cholesterol binding through targets such as SR-BI in addition to its inhibition of NPC1L1.


Assuntos
Anticolesterolemiantes/farmacologia , Azetidinas/farmacologia , Colesterol/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , Receptores Depuradores Classe B/metabolismo , Vesículas Transportadoras/metabolismo , Animais , Anticolesterolemiantes/química , Apolipoproteína A-I/farmacologia , Azetidinas/química , Relação Dose-Resposta a Droga , Ezetimiba , Feminino , Humanos , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/ultraestrutura , Masculino , Proteínas de Membrana Transportadoras/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Micelas , Microvilosidades/efeitos dos fármacos , Microvilosidades/metabolismo , Microvilosidades/ultraestrutura , Receptores Depuradores Classe B/genética
15.
Sci Rep ; 7: 41289, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-28117404

RESUMO

Insulin resistance is a risk factor for type 2 diabetes mellitus. We investigated the effect of ApoA-IV on glucose uptake in the adipose and muscle tissues of mice and cultured 3T3-L1 adipocytes. We found that treatment with ApoA-IV lowered fasting blood glucose in both WT and diabetic KKAy mice by increasing glucose uptake in cardiac muscle, white adipose tissue, and brown adipose tissue through a mechanism that was partially insulin independent. Cell culture experiments showed that ApoA-IV improved glucose uptake in adipocytes in the absence of insulin by upregulating GLUT4 translocation by PI3K mediated activation of Akt signaling pathways. Considering our previous finding that ApoA-IV treatment enhanced pancreatic insulin secretion, these results suggests that ApoA-IV acts directly upon adipose tissue to improve glucose uptake and indirectly via insulin signaling. Our findings warrant future studies to identify the receptor for ApoA-IV and the downstream targets of PI3K-Akt signaling that regulate glucose uptake in adipocytes as potential therapeutic targets for treating insulin resistance.


Assuntos
Adipócitos/metabolismo , Apolipoproteínas A/metabolismo , Glucose/metabolismo , Resistência à Insulina , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Tecido Adiposo/efeitos dos fármacos , Tecido Adiposo/metabolismo , Androstadienos/farmacologia , Animais , Glicemia/metabolismo , Diabetes Mellitus Experimental/sangue , Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Experimental/patologia , Ativação Enzimática/efeitos dos fármacos , Transportador de Glucose Tipo 4/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Fosforilação/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Transporte Proteico/efeitos dos fármacos , Wortmanina
16.
Biol Sex Differ ; 8: 4, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28149499

RESUMO

BACKGROUND: Eighty percent of patients who receive bariatric surgery are women, yet the majority of preclinical studies are in male rodents. Because sex differences drive hepatic gene expression and overall lipid metabolism, we sought to determine whether sex differences were also apparent in these endpoints in response to bariatric surgery. METHODS: Two cohorts of age-matched virgin male and female Long-Evans rats were placed on a high fat diet for 3 weeks and then received either Sham or vertical sleeve gastrectomy (VSG), a surgery which resects 80% of the stomach with no intestinal rearrangement. RESULTS: Each sex exhibited significantly decreased body weight due to a reduction in fat mass relative to Sham controls (p < 0.05). Microarray and follow-up qPCR on liver revealed striking sex differences in gene expression after VSG that reflected a down-regulation of hepatic lipid metabolism and an up-regulation of hepatic inflammatory pathways in females vs. males after VSG. While the males had a significant reduction in hepatic lipids after VSG, there was no reduction in females. Ad lib-fed and fasting circulating triglycerides, and postprandial chylomicron production were significantly lower in VSG relative to Sham animals of both sexes (p < 0.01). However, hepatic VLDL production, highest in sham-operated females, was significantly reduced by VSG in females but not males. CONCLUSIONS: Taken together, although both males and females lose weight and improve plasma lipids, there are large-scale sex differences in hepatic gene expression and consequently hepatic lipid metabolism after VSG.


Assuntos
Cirurgia Bariátrica , Metabolismo dos Lipídeos , Fígado/metabolismo , Caracteres Sexuais , Animais , Feminino , Gastrectomia , Expressão Gênica , Masculino , Ratos Long-Evans , Redução de Peso
17.
Methods Mol Biol ; 1438: 177-97, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27150091

RESUMO

Inhibitors of cholesterol absorption have been sought for decades as a means to treat and prevent cardiovascular diseases (CVDs) associated with hypercholesterolemia. Ezetimibe is the one clear success story in this regard, and other compounds with similar efficacy continue to be sought. In the last decade, the laboratory mouse, with all its genetic power, has become the premier experimental model for discovering the mechanisms underlying cholesterol absorption and has become a critical tool for preclinical testing of potential pharmaceutical entities. This chapter briefly reviews the history of cholesterol absorption research and the various gene candidates that have come under consideration as drug targets. The most common and versatile method of measuring cholesterol absorption is described in detail along with important considerations when interpreting results, and an alternative method is also presented. In recent years, reverse cholesterol transport (RCT) has become an area of intense new interest for drug discovery since this process is now considered another key to reducing CVD risk. The ultimate measure of RCT is sterol excretion and a detailed description is given for measuring neutral and acidic fecal sterols and interpreting the results.


Assuntos
Anticolesterolemiantes/farmacologia , Colesterol/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Animais , Avaliação Pré-Clínica de Medicamentos , Humanos , Hipercolesterolemia/tratamento farmacológico , Hipercolesterolemia/metabolismo , Absorção Intestinal , Camundongos , Camundongos Endogâmicos C57BL
18.
Adv Nutr ; 7(4): 719-29, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27422506

RESUMO

A variety of modified fats that provide different functionalities are used in processed foods to optimize product characteristics and nutrient composition. Partial hydrogenation results in the formation of trans FAs (TFAs) and was one of the most widely used modification processes of fats and oils. However, the negative effects of commercially produced TFAs on serum lipoproteins and risk for cardiovascular disease resulted in the Institute of Medicine and the 2010 US Dietary Guidelines for Americans both recommending that TFA intake be as low as possible. After its tentative 2013 determination that use of partially hydrogenated oils is not generally regarded as safe, the FDA released its final determination of the same in 2015. Many food technologists have turned to interesterified fat as a replacement. Interesterification rearranges FAs within and between a triglyceride molecule by use of either a chemical catalyst or an enzyme. Although there is clear utility of interesterified fats for retaining functional properties of food, the nutrition and health implications of long-term interesterified fat consumption are less well understood. The Technical Committee on Dietary Lipids of the North American Branch of the International Life Sciences Institute sponsored a workshop to discuss the health effects of interesterified fats, identify research needs, and outline considerations for the design of future studies. The consensus was that although interesterified fat production is a feasible and economically viable solution for replacing dietary TFAs, outstanding questions must be answered regarding the effects of interesterification on modifying certain aspects of lipid and glucose metabolism, inflammatory responses, hemostatic parameters, and satiety.


Assuntos
Dieta , Gorduras na Dieta/farmacologia , Esterificação , Ácidos Graxos/farmacologia , Manipulação de Alimentos , Ácidos Graxos/química , Alimento Funcional , Humanos , Hidrogenação , Política Nutricional , Triglicerídeos
19.
Lipids ; 50(4): 371-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25676339

RESUMO

The adenosine triphosphate-binding cassette (ABC) transporter G5/G8 is critical in protecting the body from accumulating dietary plant sterols. Expressed in the liver and small intestine, it transports plant sterols into the biliary and intestinal lumens, thus promoting their excretion. The extent to which G5/G8 regulates cholesterol absorption remains unclear. G5/G8 is also implicated in reducing the absorption of dietary triacylglycerols (TAG) by unknown mechanisms. We hypothesized that G5/G8 suppresses the production of chylomicrons, and its deficiency would enhance the absorption of both dietary TAG and cholesterol. The aim of this study was to investigate the effects of G5/G8 deficiency on lipid uptake and secretion into the lymph under steady-state conditions. Surprisingly, compared with wild-type mice (WT) (n = 9), G5/G8 KO (n = 13) lymph fistula mice given a continuous intraduodenal infusion of [3H]-TAG and [14C]-cholesterol showed a significant (P < 0.05) reduction in lymphatic transport of both [(3)H]-TAG and [(14)C]-cholesterol, concomitant with a significant (P < 0.05) increase of [(3)H]-TAG and [(14)C]-cholesterol accumulated in the intestinal lumen. There was no difference in the total amount of radiolabeled lipids retained in the intestinal mucosa between the two groups. G5/G8 KO mice given a bolus of TAG showed reduced intestinal TAG secretion compared with WT, suggesting an independent role for G5/G8 in facilitating intestinal TAG transport. Our data demonstrate that G5/G8 deficiency reduces the uptake and secretion of both dietary TAG and cholesterol by the intestine, suggesting a novel role for the sterol transporter in the formation and secretion of chylomicrons.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Colesterol/metabolismo , Gorduras na Dieta/metabolismo , Lipoproteínas/metabolismo , Linfa/metabolismo , Triglicerídeos/metabolismo , Membro 5 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Membro 8 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/genética , Animais , Transporte Biológico , Composição Corporal , Colesterol/sangue , Gorduras na Dieta/sangue , Técnicas de Inativação de Genes , Intestino Delgado/metabolismo , Lipoproteínas/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Triglicerídeos/sangue
20.
Curr Protoc Mouse Biol ; 2: 219-230, 2012 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23024926

RESUMO

Lipid absorption begins with the digestion of dietary triacylglycerol and ultimately results in the secretion of triacylglycerol in chylomicrons into the lymphatics. Additionally, the intestine also secretes numerous proteins and peptides involved in lipid and lipoprotein metabolism in response to food. Ultimately, chylomicrons and these proteins, peptides, and hormones are found in lymph. The lymph fistula rat model has traditionally been used to study this intestinal absorption of nutrients, especially lipids, but recently, this model has also been used for studying the secretion of hormones by the small intestine. The protocols described in this article include the lymph fistula rat and mouse model, as well as in vivo chylomicron metabolism studies. These experimental models are helpful for the study of metabolic phenotypes, the characterization of intestinal lipid absorption and transport, and determining peripheral metabolism of intestinally derived lipoproteins.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA