Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Mol Cell ; 68(2): 265-280, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-29053955

RESUMO

The linear ubiquitin chain assembly complex, LUBAC, is the only known mammalian ubiquitin ligase that makes methionine 1 (Met1)-linked polyubiquitin (also referred to as linear ubiquitin). A decade after LUBAC was discovered as a cellular activity of unknown function, there are now many lines of evidence connecting Met1-linked polyubiquitin to NF-κB signaling, cell death, inflammation, immunity, and cancer. We now know that Met1-linked polyubiquitin has potent signaling functions and that its deregulation is connected to disease. Indeed, mutations and deficiencies in several factors involved in conjugation and deconjugation of Met1-linked polyubiquitin have been implicated in immune-related disorders. Here, we discuss current knowledge and recent insights into the role and regulation of Met1-linked polyubiquitin, with an emphasis on the mechanisms controlling the function of LUBAC.


Assuntos
Imunidade , NF-kappa B/metabolismo , Proteínas de Neoplasias/metabolismo , Neoplasias/metabolismo , Poliubiquitina/metabolismo , Transdução de Sinais , Animais , Morte Celular , Humanos , NF-kappa B/genética , NF-kappa B/imunologia , Proteínas de Neoplasias/imunologia , Neoplasias/imunologia , Poliubiquitina/genética , Poliubiquitina/imunologia
2.
EMBO J ; 39(17): e104202, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32696476

RESUMO

IL-17 mediates immune protection from fungi and bacteria, as well as it promotes autoimmune pathologies. However, the regulation of the signal transduction from the IL-17 receptor (IL-17R) remained elusive. We developed a novel mass spectrometry-based approach to identify components of the IL-17R complex followed by analysis of their roles using reverse genetics. Besides the identification of linear ubiquitin chain assembly complex (LUBAC) as an important signal transducing component of IL-17R, we established that IL-17 signaling is regulated by a robust negative feedback loop mediated by TBK1 and IKKε. These kinases terminate IL-17 signaling by phosphorylating the adaptor ACT1 leading to the release of the essential ubiquitin ligase TRAF6 from the complex. NEMO recruits both kinases to the IL-17R complex, documenting that NEMO has an unprecedented negative function in IL-17 signaling, distinct from its role in NF-κB activation. Our study provides a comprehensive view of the molecular events of the IL-17 signal transduction and its regulation.


Assuntos
Retroalimentação Fisiológica , Receptores de Interleucina-17/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Células HEK293 , Células HeLa , Humanos , Quinase I-kappa B/genética , Quinase I-kappa B/metabolismo , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Receptores de Interleucina-17/genética
3.
Br J Haematol ; 204(4): 1439-1449, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37807708

RESUMO

Induction therapy followed by CD34+ cell mobilisation and autologous transplantation represents standard of care for multiple myeloma (MM). However, the anti-CD38 monoclonal antibodies daratumumab and isatuximab have been associated with mobilisation impairment, yet the mechanism remains unclear. In this study, we investigated the effect of three different regimens (dara-VCd, isa-KRd and VTd) on CD34+ cells using flow cytometry and transcriptomics. Decreased CD34+ cell peak concentration and yields, longer collection and delayed engraftment were reproduced after dara-VCd/isa-KRd versus VTd induction in 34 patients in total. Using flow cytometry, we detected major changes in the proportion of apheresis product and bone marrow CD34+ subsets in patients treated with regimens containing anti-CD38 therapy; however, without any decrease in CD38high B-lymphoid progenitors in both materials. RNA-seq of mobilised CD34+ cells from 21 patients showed that adhesion genes are overexpressed in CD34+ cells after dara-VCd/isa-KRd and JCAD, NRP2, MDK, ITGA3 and CLEC3B were identified as potential target genes. Finally, direct in vitro effect of isatuximab in upregulating JCAD and CLEC3B was confirmed by quantitative PCR. These findings suggest that upregulated adhesion-related interactions, rather than killing of CD34+ cells by effector mechanisms, could be leading causes of decreased mobilisation efficacy in MM patients treated with anti-CD38 therapy.


Assuntos
Mieloma Múltiplo , Humanos , Mieloma Múltiplo/terapia , Antígenos CD34/análise , Medula Óssea/química , Citometria de Fluxo , Mobilização de Células-Tronco Hematopoéticas , ADP-Ribosil Ciclase 1
4.
Mol Cell ; 63(6): 990-1005, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27591049

RESUMO

The linear ubiquitin chain assembly complex (LUBAC) regulates immune signaling, and its function is regulated by the deubiquitinases OTULIN and CYLD, which associate with the catalytic subunit HOIP. However, the mechanism through which CYLD interacts with HOIP is unclear. We here show that CYLD interacts with HOIP via spermatogenesis-associated protein 2 (SPATA2). SPATA2 interacts with CYLD through its non-canonical PUB domain, which binds the catalytic CYLD USP domain in a CYLD B-box-dependent manner. Significantly, SPATA2 binding activates CYLD-mediated hydrolysis of ubiquitin chains. SPATA2 also harbors a conserved PUB-interacting motif that selectively docks into the HOIP PUB domain. In cells, SPATA2 is recruited to the TNF receptor 1 signaling complex and is required for CYLD recruitment. Loss of SPATA2 increases ubiquitination of LUBAC substrates and results in enhanced NOD2 signaling. Our data reveal SPATA2 as a high-affinity binding partner of CYLD and HOIP, and a regulatory component of LUBAC-mediated NF-κB signaling.


Assuntos
NF-kappa B/química , Proteínas/química , Proteínas Supressoras de Tumor/química , Ubiquitina-Proteína Ligases/química , Ubiquitina/química , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Cristalografia por Raios X , Enzima Desubiquitinante CYLD , Endopeptidases/química , Endopeptidases/genética , Endopeptidases/imunologia , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Humanos , Imunidade Inata , Cinética , Simulação de Acoplamento Molecular , NF-kappa B/genética , NF-kappa B/imunologia , Proteína Adaptadora de Sinalização NOD2/química , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/imunologia , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Proteínas/genética , Proteínas/imunologia , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Especificidade por Substrato , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/imunologia , Ubiquitina/genética , Ubiquitina/imunologia , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/imunologia
5.
J Transl Med ; 21(1): 197, 2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36922828

RESUMO

Cancer immunotherapies utilizing genetically engineered T cells have emerged as powerful personalized therapeutic agents showing dramatic preclinical and clinical results, particularly in hematological malignancies. Ectopically expressed chimeric antigen receptors (CARs) reprogram immune cells to target and eliminate cancer. However, CAR T cell therapy's success depends on the balance between effective anti-tumor activity and minimizing harmful side effects. To improve CAR T cell therapy outcomes and mitigate associated toxicities, scientists from different fields are cooperating in developing next-generation products using the latest molecular cell biology and synthetic biology tools and technologies. The immunotherapy field is rapidly evolving, with new approaches and strategies being reported at a fast pace. This comprehensive literature review aims to provide an up-to-date overview of the latest developments in controlling CAR T cell activity for improved safety, efficacy, and flexibility.


Assuntos
Neoplasias , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Linfócitos T , Neoplasias/terapia , Imunoterapia , Receptores de Antígenos de Linfócitos T
6.
Int J Mol Sci ; 24(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36982699

RESUMO

During innate immune responses, myeloid differentiation primary response 88 (MyD88) functions as a critical signaling adaptor protein integrating stimuli from toll-like receptors (TLR) and the interleukin-1 receptor (IL-1R) family and translates them into specific cellular outcomes. In B cells, somatic mutations in MyD88 trigger oncogenic NF-κB signaling independent of receptor stimulation, which leads to the development of B-cell malignancies. However, the exact molecular mechanisms and downstream signaling targets remain unresolved. We established an inducible system to introduce MyD88 to lymphoma cell lines and performed transcriptomic analysis (RNA-seq) to identify genes differentially expressed by MyD88 bearing the L265P oncogenic mutation. We show that MyD88L265P activates NF-κB signaling and upregulates genes that might contribute to lymphomagenesis, including CD44, LGALS3 (coding Galectin-3), NFKBIZ (coding IkBƺ), and BATF. Moreover, we demonstrate that CD44 can serve as a marker of the activated B-cell (ABC) subtype of diffuse large B-cell lymphoma (DLBCL) and that CD44 expression is correlated with overall survival in DLBCL patients. Our results shed new light on the downstream outcomes of MyD88L265P oncogenic signaling that might be involved in cellular transformation and provide novel therapeutical targets.


Assuntos
Linfoma Difuso de Grandes Células B , NF-kappa B , Humanos , NF-kappa B/genética , NF-kappa B/metabolismo , Galectina 3/metabolismo , Fator 88 de Diferenciação Mieloide/genética , Fator 88 de Diferenciação Mieloide/metabolismo , Linfoma Difuso de Grandes Células B/patologia , Mutação , Perfilação da Expressão Gênica , Fatores de Transcrição de Zíper de Leucina Básica/genética , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/metabolismo
7.
EMBO J ; 37(17)2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30026309

RESUMO

RIPK2 mediates inflammatory signaling by the bacteria-sensing receptors NOD1 and NOD2. Kinase inhibitors targeting RIPK2 are a proposed strategy to ameliorate NOD-mediated pathologies. Here, we reveal that RIPK2 kinase activity is dispensable for NOD2 inflammatory signaling and show that RIPK2 inhibitors function instead by antagonizing XIAP-binding and XIAP-mediated ubiquitination of RIPK2. We map the XIAP binding site on RIPK2 to the loop between ß2 and ß3 of the N-lobe of the kinase, which is in close proximity to the ATP-binding pocket. Through characterization of a new series of ATP pocket-binding RIPK2 inhibitors, we identify the molecular features that determine their inhibition of both the RIPK2-XIAP interaction, and of cellular and in vivoNOD2 signaling. Our study exemplifies how targeting of the ATP-binding pocket in RIPK2 can be exploited to interfere with the RIPK2-XIAP interaction for modulation of NOD signaling.


Assuntos
Proteína Adaptadora de Sinalização NOD2/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/antagonistas & inibidores , Proteína Serina-Treonina Quinases de Interação com Receptores/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/metabolismo , Camundongos , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/genética , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/metabolismo , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo , Transdução de Sinais/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
8.
EMBO J ; 35(17): 1923-34, 2016 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-27458189

RESUMO

Elevated c-Jun levels result in apoptosis and are evident in neurodegenerative disorders such as Alzheimer's disease and dementia and after global cerebral insults including stroke and epilepsy. NMDA receptor (NMDAR) antagonists block c-Jun upregulation and prevent neuronal cell death following excitotoxic insults. However, the molecular mechanisms regulating c-Jun abundance in neurons are poorly understood. Here, we show that the synaptic component Proline rich 7 (PRR7) accumulates in the nucleus of hippocampal neurons following NMDAR activity. We find that PRR7 inhibits the ubiquitination of c-Jun by E3 ligase SCF(FBW) (7) (FBW7), increases c-Jun-dependent transcriptional activity, and promotes neuronal death. Microarray assays show that PRR7 abundance is directly correlated with transcripts associated with cellular viability. Moreover, PRR7 knockdown attenuates NMDAR-mediated excitotoxicity in neuronal cultures in a c-Jun-dependent manner. Our results show that PRR7 links NMDAR activity to c-Jun function and provide new insights into the molecular processes that underlie NMDAR-dependent excitotoxicity.


Assuntos
Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Proteínas de Membrana/metabolismo , Neurônios/fisiologia , Processamento de Proteína Pós-Traducional , Animais , Sobrevivência Celular , Células Cultivadas , Agonistas de Aminoácidos Excitatórios/metabolismo , Hipocampo/patologia , Humanos , Análise em Microsséries , N-Metilaspartato/metabolismo , Ratos , Ubiquitinação
9.
Genes Immun ; 20(8): 641-650, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31110240

RESUMO

The inhibitor of apoptosis proteins (IAPs) are best known for their ability to regulate cell survival and death processes. However, in addition to cell death, IAPs also act as innate immune sensors and modulate multiple pathways, such as autophagy and cell division. Many of these IAP functions are non-redundant even though they are based on the same molecular mechanism of action. These distinct functions of IAPs derive from their capacity to target specific substrates for ubiquitination and/or proteolytic cleavage. The unique functions of IAPs also derives from their unique cellular localizations, cell type and tissue-specific expression patterns. The diverse roles of IAPs are reflected by the fact that in humans the IAP family comprises eight distinct members. Genetic evidence from human pathologies also attests to the non-redundant functions of the IAPs since very diverse diseases arise upon aberrant IAP expression. In this review, we give an overview of the known mechanisms of action of the various IAPs, and focus on their specific roles in mediating innate immunity. We also look at the distinct phenotypes related to the dysregulation of the IAPs, and the human pathologies associated with each human IAP.


Assuntos
Sobrevivência Celular , Proteínas Inibidoras de Apoptose/imunologia , Animais , Doenças Autoimunes/imunologia , Doenças Autoimunes/patologia , Morte Celular , Humanos , Infecções/imunologia , Infecções/patologia , Inflamassomos/imunologia , Proteínas Inibidoras de Apoptose/genética , Transdução de Sinais
11.
J Biol Chem ; 287(27): 22812-21, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22589543

RESUMO

Transmembrane adaptor proteins are membrane-anchored proteins consisting of a short extracellular part, a transmembrane domain, and a cytoplasmic part with various protein-protein interaction motifs but lacking any enzymatic activity. They participate in the regulation of various signaling pathways by recruiting other proteins to the proximity of cellular membranes where the signaling is often initiated and propagated. In this work, we show that LST1/A, an incompletely characterized protein encoded by MHCIII locus, is a palmitoylated transmembrane adaptor protein. It is expressed specifically in leukocytes of the myeloid lineage, where it localizes to the tetraspanin-enriched microdomains. In addition, it binds SHP-1 and SHP-2 phosphatases in a phosphotyrosine-dependent manner, facilitating their recruitment to the plasma membrane. These data suggest a role for LST1/A in negative regulation of signal propagation.


Assuntos
Membrana Celular/metabolismo , Proteínas de Membrana/metabolismo , Células Mieloides/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 6/metabolismo , Sequência de Aminoácidos , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Células Jurkat , Complexo Principal de Histocompatibilidade/fisiologia , Proteínas de Membrana/química , Proteínas de Membrana/genética , Dados de Sequência Molecular , Células Mieloides/citologia , Plaquinas/metabolismo , Cultura Primária de Células , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico/fisiologia , Pseudópodes/metabolismo , Transdução de Sinais/fisiologia , Células U937
12.
J Clin Oncol ; 41(7): 1383-1392, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36315921

RESUMO

PURPOSE: Primary plasma cell leukemia (PCL) is the most aggressive monoclonal gammopathy. It was formerly characterized by ≥ 20% circulating plasma cells (CTCs) until 2021, when this threshold was decreased to ≥ 5%. We hypothesized that primary PCL is not a separate clinical entity, but rather that it represents ultra-high-risk multiple myeloma (MM) characterized by elevated CTC levels. METHODS: We assessed the levels of CTCs by multiparameter flow cytometry in 395 patients with newly diagnosed transplant-ineligible MM to establish a cutoff for CTCs that identifies the patients with ultra-high-risk PCL-like MM. We tested the cutoff on 185 transplant-eligible patients with MM and further validated on an independent cohort of 280 transplant-ineligible patients treated in the GEM-CLARIDEX trial. The largest published real-world cohort of patients with primary PCL was used for comparison of survival. Finally, we challenged the current 5% threshold for primary PCL diagnosis. RESULTS: Newly diagnosed transplant-ineligible patients with MM with 2%-20% CTCs had significantly shorter progression-free survival (3.1 v 15.6 months; P < .001) and overall survival (14.6 v 33.6 months; P = .023) than patients with < 2%. The 2% cutoff proved to be applicable also in transplant-eligible patients with MM and was successfully validated on an independent cohort of patients from the GEM-CLARIDEX trial. Most importantly, patients with 2%-20% CTCs had comparable dismal outcomes with primary PCL. Moreover, after revealing a low mean difference between flow cytometric and morphologic evaluation of CTCs, we showed that patients with 2%-5% CTCs have similar outcomes as those with 5%-20% CTCs. CONCLUSION: Our study uncovers that ≥ 2% CTCs is a biomarker of hidden primary PCL and supports the assessment of CTCs by flow cytometry during the diagnostic workup of MM.


Assuntos
Leucemia Plasmocitária , Mieloma Múltiplo , Células Neoplásicas Circulantes , Humanos , Mieloma Múltiplo/tratamento farmacológico , Prognóstico , Plasmócitos/patologia , Células Neoplásicas Circulantes/patologia , Biomarcadores Tumorais
13.
J Biol Chem ; 286(22): 19617-29, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21460222

RESUMO

Transmembrane adaptor proteins (TRAPs) are important organizers and regulators of immunoreceptor-mediated signaling. A bioinformatic search revealed several potential novel TRAPs, including a highly conserved protein, proline rich 7 (PRR7), previously described as a component of the PSD-95/N-methyl-d-aspartate receptor protein complex in postsynaptic densities (PSD) of rat neurons. Our data demonstrate that PRR7 is weakly expressed in other tissues but is readily up-regulated in activated human peripheral blood lymphocytes. Transient overexpression of PRR7 in Jurkat T cell line led to gradual apoptotic death dependent on the WW domain binding motif surrounding Tyr-166 in the intracellular part of PRR7. To circumvent the pro-apoptotic effect of PRR7, we generated Jurkat clones with inducible expression of PRR7 (J-iPRR7). In these cells acute induction of PRR7 expression had a dual effect. It resulted in up-regulation of the transcription factor c-Jun and the activation marker CD69 as well as enhanced production of IL-2 after phorbol 12-myristate 13-acetate (PMA) and ionomycin treatment. On the other hand, expression of PRR7 inhibited general tyrosine phosphorylation and calcium influx after T cell receptor cross-linking by antibodies. Moreover, we found PRR7 constitutively tyrosine-phosphorylated and associated with Src. Collectively, these data indicate that PRR7 is a potential regulator of signaling and apoptosis in activated T cells.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/biossíntese , Apoptose/fisiologia , Sinalização do Cálcio/fisiologia , Regulação da Expressão Gênica/fisiologia , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Motivos de Aminoácidos , Animais , Antígenos CD/biossíntese , Antígenos CD/genética , Antígenos CD/imunologia , Antígenos de Diferenciação de Linfócitos T/biossíntese , Antígenos de Diferenciação de Linfócitos T/genética , Antígenos de Diferenciação de Linfócitos T/imunologia , Apoptose/efeitos dos fármacos , Células CACO-2 , Sinalização do Cálcio/efeitos dos fármacos , Carcinógenos/farmacologia , Células HEK293 , Humanos , Interleucina-2/biossíntese , Interleucina-2/genética , Interleucina-2/imunologia , Ionomicina/farmacologia , Ionóforos/farmacologia , Células Jurkat , Lectinas Tipo C/biossíntese , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/imunologia , Proteínas Proto-Oncogênicas c-jun/metabolismo , Ratos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Acetato de Tetradecanoilforbol/farmacologia , Células U937
14.
J Immunol ; 184(7): 3689-96, 2010 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-20207997

RESUMO

Membrane rafts and signaling molecules associated with them are thought to play important roles in immunoreceptor signaling. Rafts differ in their lipid and protein compositions from the rest of the membrane and are relatively resistant to solubilization by Triton X-100 or similar detergents, producing buoyant, detergent-resistant membranes (DRMs) that can be isolated by density gradient ultracentrifugation. One of the key signaling molecules present in T cell DRMs is the transmembrane adaptor protein LAT (linker for activation of T cells). In contrast to previous results, a recent study demonstrated that a LAT construct not present in the buoyant DRMs is fully able to support TCR signaling and development of T cells in vivo. This finding caused doubts about the real physiological role of rafts in TCR signaling. In this study, we demonstrate that these results can be explained by the existence of a novel type of membrane raft-like microdomains, producing upon detergent solubilization "heavy DRMs" containing a number of membrane molecules. At a moderate level of expression, LAT supported TCR signaling more efficiently than constructs targeted to the microdomains producing heavy DRMs or to nonraft membrane. We suggest that different types of membrane microdomains provide environments regulating the functional efficiencies of signaling molecules present therein.


Assuntos
Microdomínios da Membrana/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Humanos , Células Jurkat , Ativação Linfocitária/imunologia , Microdomínios da Membrana/química , Proteínas de Membrana/química , Proteínas de Membrana/imunologia , Proteínas de Membrana/isolamento & purificação , Proteínas de Membrana/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais/imunologia , Linfócitos T/química , Linfócitos T/metabolismo
15.
Nat Commun ; 13(1): 6820, 2022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36357400

RESUMO

Serum monoclonal immunoglobulin (Ig) is the main diagnostic factor for patients with multiple myeloma (MM), however its prognostic potential remains unclear. On a large MM patient cohort (n = 4146), we observe no correlation between serum Ig levels and patient survival, while amount of intracellular Ig has a strong predictive effect. Focused CRISPR screen, transcriptional and proteomic analysis identify deubiquitinase OTUD1 as a critical mediator of Ig synthesis, proteasome inhibitor sensitivity and tumor burden in MM. Mechanistically, OTUD1 deubiquitinates peroxiredoxin 4 (PRDX4), protecting it from endoplasmic reticulum (ER)-associated degradation. In turn, PRDX4 facilitates Ig production which coincides with the accumulation of unfolded proteins and higher ER stress. The elevated load on proteasome ultimately potentiates myeloma response to proteasome inhibitors providing a window for a rational therapy. Collectively, our findings support the significance of the Ig production machinery as a biomarker and target in the combinatory treatment of MM patients.


Assuntos
Mieloma Múltiplo , Inibidores de Proteassoma , Humanos , Inibidores de Proteassoma/farmacologia , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/genética , Mieloma Múltiplo/metabolismo , Bortezomib/farmacologia , Bortezomib/uso terapêutico , Proteômica , Apoptose , Complexo de Endopeptidases do Proteassoma/metabolismo , Imunoglobulinas , Enzimas Desubiquitinantes , Proteases Específicas de Ubiquitina
16.
Cells ; 10(5)2021 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-33919155

RESUMO

Cellular immunotherapy is becoming a new pillar in cancer treatment after recent striking results in different clinical trials with chimeric antigen receptor T cells. However, this innovative therapy is not exempt from challenges such as off-tumor toxicity, tumor recurrence in heterogeneous tumors, and affordability. To surpass these limitations, we exploit the unique anti-tumor characteristics of natural killer (NK) cells. In this study, we aimed to obtain a clinically relevant number of allogeneic NK cells derived from peripheral blood (median of 14,050 million cells from a single donor) to target a broad spectrum of solid and liquid tumor types. To boost their anti-tumor activity, we combined allogeneic NK cells with the approved anti-cluster of differentiation 38 (CD-38) monoclonal antibody Daratumumab to obtain a synergistic therapeutic effect against incurable multiple myeloma. The combination therapy was refined with CD16 polymorphism donor selection and uncomplicated novel in vitro pretreatment to avoid undesired fratricide, increasing the in vitro therapeutic effect against the CD-38 positive multiple myeloma cell line by more than 20%. Time-lapse imaging of mice with established human multiple myeloma xenografts revealed that combination therapy of selected and pretreated NK cells with Daratumumab presented tumor volumes 43-fold smaller than control ones. Combination therapy with an allogeneic source of fully functional NK cells could be beneficial in future clinical settings to circumvent monoclonal antibodies' low therapeutic efficiency due to NK cell dysfunctionality in MM patients.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos Imunológicos/farmacologia , Terapia Baseada em Transplante de Células e Tecidos/métodos , Imunoterapia/métodos , Células Matadoras Naturais/imunologia , Mieloma Múltiplo/tratamento farmacológico , Animais , Estudos de Casos e Controles , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos SCID
17.
Cancers (Basel) ; 12(5)2020 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-32456165

RESUMO

: Hematological malignancies comprise over a hundred different types of cancers and account for around 6.5% of all cancers. Despite the significant improvements in diagnosis and treatment, many of those cancers remain incurable. In recent years, cancer cell-based therapy has become a promising approach to treat those incurable hematological malignancies with striking results in different clinical trials. The most investigated, and the one that has advanced the most, is the cell-based therapy with T lymphocytes modified with chimeric antigen receptors. Those promising initial results prepared the ground to explore other cell-based therapies to treat patients with blood cancer. In this review, we want to provide an overview of the different types of cell-based therapies in blood cancer, describing them according to the cell source.

18.
Cancers (Basel) ; 12(7)2020 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-32635428

RESUMO

Cell-to-cell communication is a fundamental process in every multicellular organism. In addition to membrane-bound and released factors, the sharing of cytosolic components represents a new, poorly explored signaling route. An extraordinary example of this communication channel is the direct transport of mitochondria between cells. In this review, we discuss how intercellular mitochondrial transfer can be used by cancer cells to sustain their high metabolic requirements and promote drug resistance and describe relevant molecular players in the context of current and future cancer therapy.

19.
Exp Hematol ; 61: 10-25, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29477371

RESUMO

Inhibitors of antiapoptotic proteins of the BCL2 family can successfully restart the deregulated process of apoptosis in malignant cells. Whereas nonselective agents have been limited by their affinity to different BCL2 members, thus inducing excessive toxicity, the highly selective BCL2 inhibitor venetoclax (ABT-199, Venclexta™) has an acceptable safety profile. To date, it has been approved in monotherapy for the treatment of relapsed or refractory chronic lymphocytic leukemia (CLL) with 17p deletion. Extension of indications can be expected in monotherapy and in combination regimens. Sensitivity to venetoclax is not common in lymphomas, but promising outcomes have been achieved in the mantle cell lymphoma group. Venetoclax is also active in multiple myeloma patients, especially in those with translocation t(11;14), even if high-risk features such as del17p are also present. Surprisingly, positive results are being obtained in elderly acute myeloid leukemia patients, in whom inhibition of BCL2 is able to substantially increase the efficacy of low-dose cytarabine or hypomethylating agents. Here, we provide a summary of available results from clinical trials and describe a specific mechanism of action that stands behind the efficacy of venetoclax in hematological malignancies.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/uso terapêutico , Leucemia Linfocítica Crônica de Células B/tratamento farmacológico , Sulfonamidas/uso terapêutico , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Protocolos Clínicos , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Transdução de Sinais/efeitos dos fármacos , Sulfonamidas/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA