Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Am J Physiol Renal Physiol ; 301(6): F1218-30, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-21900455

RESUMO

The progression of IgA nephropathy (IgAN), the most frequent type of primary glomerulonephritis, is associated with high levels of mononuclear leukocyte infiltration into the kidney. These cells consist mainly of T cells and macrophages. Our previous study showed that a decoy receptor 3 (DCR3) gene therapy can prevent the development of a mouse autoimmune glomerulonephritis model by its potent immune modulating effects (Ka SM, Sytwu HK, Chang DM, Hsieh SL, Tsai PY, Chen A. J Am Soc Nephrol 18: 2473-2485, 2007). Here, we tested the hypothesis that DCR3 might prevent the progression of IgAN, an immune complex-mediated primary glomerulonephritis, by inhibiting T cell activation, renal T cell/macrophage infiltration, and protecting the kidney from apoptosis. We used a progressive IgAN (Prg-IgAN) model in B cell-deficient mice, because the mice are characterized by a dramatic proliferation of activated T cells systemically and progressive NF-κB activation in the kidney. We treated the animals with short-term gene therapy with DCR3 plasmids by hydrodynamics-based gene delivery. When the mice were euthanized on day 21, we found that, compared with empty vector-treated (disease control) Prg-IgAN mice, DCR3 gene therapy resulted in 1) systemic inhibition of T cell activation and proliferation; 2) lower serum levels of proinflammatory cytokines; 3) improved proteinuria, renal function, and renal pathology (inhibiting the development of marked glomerular proliferation, crescent formation, glomerulosclerosis, and interstitial inflammation); 5) suppression of T cell and macrophage infiltration into the periglomerular interstitium of the kidney; and 5) a reduction in apoptotic figures in the kidney. On the basis of these findings, DCR3 might be useful therapeutically in preventing the progression of IgAN.


Assuntos
Apoptose/fisiologia , Terapia Genética , Glomerulonefrite por IGA/terapia , Rim/fisiologia , Leucócitos Mononucleares/imunologia , Membro 6b de Receptores do Fator de Necrose Tumoral/genética , Animais , Quimiotaxia de Leucócito/fisiologia , Citocinas/sangue , Progressão da Doença , Glomerulonefrite por IGA/imunologia , Humanos , Inflamação/sangue , Camundongos
2.
Theranostics ; 10(9): 4233-4249, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32226550

RESUMO

Rationale: Subjects unable to sustain ß-cell compensation develop type 2 diabetes. Early growth response-1 protein (EGR-1), implicated in the regulation of cell differentiation, proliferation, and apoptosis, is induced by diverse metabolic challenges, such as glucose or other nutrients. Therefore, we hypothesized that deficiency of EGR-1 might influence ß-cell compensation in response to metabolic overload. Methods: Mice deficient in EGR-1 (Egr1-/-) were used to investigate the in vivo roles of EGR-1 in regulation of glucose homeostasis and beta-cell compensatory responses. Results: In response to a high-fat diet, Egr1-/- mice failed to secrete sufficient insulin to clear glucose, which was associated with lower insulin content and attenuated hypertrophic response of islets. High-fat feeding caused a dramatic impairment in glucose-stimulated insulin secretion and downregulated the expression of genes encoding glucose sensing proteins. The cells co-expressing both insulin and glucagon were dramatically upregulated in islets of high-fat-fed Egr1-/- mice. EGR-1-deficient islets failed to maintain the transcriptional network for ß-cell compensatory response. In human pancreatic tissues, EGR1 expression correlated with the expression of ß-cell compensatory genes in the non-diabetic group, but not in the diabetic group. Conclusion: These results suggest that EGR-1 couples the transcriptional network to compensation for the loss of ß-cell function and identity. Thus, our study highlights the early stress coupler EGR-1 as a critical factor in the development of pancreatic islet failure.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Proteína 1 de Resposta de Crescimento Precoce/fisiologia , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Animais , Linhagem Celular Tumoral , Glucagon/metabolismo , Insulina/metabolismo , Células Secretoras de Insulina/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
Cardiovasc Res ; 105(1): 107-17, 2015 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-25388665

RESUMO

AIMS: The recombinant epidermal growth factor-like domain plus the serine/threonine-rich domain of thrombomodulin (rTMD23) promotes angiogenesis and accelerates the generation of activated protein C (APC), which facilitates angiogenesis. The aim of this study was to elucidate the molecular mechanisms underlying the angiogenic activity of rTMD23. METHODS AND RESULTS: We prepared rTMD23 and its mutants that did not possess the ability to promote APC generation and investigated their angiogenic activities in vitro and in vivo. rTMD23 mutants promoted proliferation, migration, and tube formation of human umbilical vein endothelial cells in vitro and induced neovascularization in vivo; these effects were similar to those exerted by wild-type rTMD23. To investigate its interaction with rTMD23, Type I fibroblast growth factor receptor (FGFR1) was precipitated along with syndecan-4 by rTMD23-conjugated Sepharose in human umbilical vein endothelial cells and FGFR1-expressing human embryonic kidney 293 cells. Additionally, the kinetics of the interaction between rTMD23 and FGFR1 were analysed using surface plasmon resonance. rTMD23-induced FGFR1 activation and tube formation were inhibited by an FGFR1-specific tyrosine kinase inhibitor, PD173074, or by knockdown of FGFR1 using siRNA technology. We observed an improvement in rat hindlimb recovery in an ischaemic model following rTMD23 treatment, and this was associated with increased neovascularization and FGFR1 phosphorylation. CONCLUSION: rTMD23 induced angiogenesis via FGFR1, a process that is independent of the APC pathway.


Assuntos
Neovascularização Fisiológica/fisiologia , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/fisiologia , Trombomodulina/fisiologia , Indutores da Angiogênese/química , Indutores da Angiogênese/farmacologia , Animais , Neovascularização da Córnea/etiologia , Técnicas de Silenciamento de Genes , Células HEK293 , Membro Posterior/irrigação sanguínea , Células Endoteliais da Veia Umbilical Humana , Humanos , Isquemia/tratamento farmacológico , Isquemia/patologia , Isquemia/fisiopatologia , Camundongos , Camundongos Endogâmicos BALB C , Neovascularização Fisiológica/efeitos dos fármacos , Fosforilação , Proteína C/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Estrutura Terciária de Proteína , Pirimidinas/farmacologia , Ratos , Ratos Sprague-Dawley , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/antagonistas & inibidores , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia , Sindecana-4/metabolismo , Trombomodulina/química , Trombomodulina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA