Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Anal Biochem ; 662: 115001, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36481242

RESUMO

We present an improved ddRAD-Seq protocol for identifying single nucleotide polymorphisms (SNPs). It utilizes selected restriction enzyme digestion fragments, quick acting ligases that are neutral with the restriction enzyme buffer eliminating buffer exchange steps, and adapters designed to be compatible with Illumina index primers. Library amplification and barcoding are completed in one PCR step, and magnetic beads are used to purify the genomic fragments from the ligation and library generation steps. Our protocol increases the efficiency and decreases the time to complete a ddRAD-Seq experiment. To demonstrate its utility, we compared SNPs from our protocol with those from whole genome resequencing data from Gossypium herbaceum and Gossypium arboreum. Principal component analysis demonstrated that the variability of the combined data was explained by the genotype (PC1) and methodology applied (PC2). Phylogenetic analysis showed that the SNPs from our method clustered with SNPs from the resequencing data of the corresponding genotype. Sequence alignments illustrated that for homozygous loci, more than 90% of the SNPs from the resequencing data were discovered by our method. Our analyses suggest that our ddRAD-Seq method is reliable in identifying SNPs suitable for phylogenetic and association genetic studies while reducing cost and time over known methods.


Assuntos
Genoma , Polimorfismo de Nucleotídeo Único , Polimorfismo de Nucleotídeo Único/genética , Filogenia , Análise de Sequência de DNA/métodos , Sequência de Bases , Sequenciamento de Nucleotídeos em Larga Escala/métodos
2.
BMC Plant Biol ; 22(1): 18, 2022 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-34991468

RESUMO

BACKGROUND: Nuclear endosperm development is a common mechanism among Angiosperms, including Arabidopsis. During nuclear development, the endosperm nuclei divide rapidly after fertilization without cytokinesis to enter the syncytial phase, which is then followed by the cellularized phase. The endosperm can be divided into three spatial domains with distinct functions: the micropylar, peripheral, and chalazal domains. Previously, we identified two putative small invertase inhibitors, InvINH1 and InvINH2, that are specifically expressed in the micropylar region of the syncytial endosperm. In addition, ectopically expressing InvINH1 in the cellularized endosperm led to a reduction in embryo growth rate. However, it is not clear what are the upstream regulators responsible for the specific expression of InvINHs in the syncytial endosperm. RESULTS: Using protoplast transient expression system, we discovered that a group of type I MADS box transcription factors can form dimers to activate InvINH1 promoter. Promoter deletion assays carried out in the protoplast system revealed the presence of an enhancer region in InvINH1 promoter, which contains several consensus cis-elements for the MADS box proteins. Using promoter deletion assay in planta, we further demonstrated that this enhancer region is required for InvINH1 expression in the syncytial endosperm. One of the MADS box genes, AGL62, is a key transcription factor required for syncytial endosperm development. Using promoter-GFP reporter assay, we demonstrated that InvINH1 and InvINH2 are not expressed in agl62 mutant seeds. Collectively, our data supports the role of AGL62 and other type I MADS box genes as the upstream activators of InvINHs expression in the syncytial endosperm. CONCLUSIONS: Our findings revealed several type I MADS box genes that are responsible for activating InvINH1 in the syncytial endosperm, which in turn regulates embryo growth rate during early stage of seed development.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Endosperma/metabolismo , Regulação da Expressão Gênica de Plantas , Peptídeos e Proteínas de Sinalização Intercelular , Proteínas de Domínio MADS/genética , beta-Frutofuranosidase/antagonistas & inibidores , Arabidopsis/enzimologia , Endosperma/genética , Elementos Facilitadores Genéticos , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas de Domínio MADS/metabolismo , Regiões Promotoras Genéticas , Protoplastos/metabolismo , Fatores de Transcrição/metabolismo
3.
Anal Biochem ; 602: 113781, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32485163

RESUMO

MicroRNAs (miRNAs) are 18-24 nucleotide regulatory RNAs. They are involved in the regulation of genetic and biological pathways through post transcriptional gene silencing and/or translational repression. Data suggests a slow evolutionary rate for the saltwater crocodile (Crocodylus porosus) over the past several million years when compared to birds, the closest extant relatives of crocodilians. Understanding gene regulation in the saltwater crocodile in the context of relatively slow genomic change thus holds potential for the investigation of genomics, evolution, and adaptation. Utilizing eleven tissue types and sixteen small RNA libraries, we report 644 miRNAs in the saltwater crocodile with >78% of miRNAs being novel to crocodilians. We also identified potential targets for the miRNAs and analyzed the relationship of the miRNA repertoire to transposable elements (TEs). Results suggest an increased association of DNA transposons with miRNAs when compared to retrotransposons. This work reports the first comprehensive analysis of miRNAs in Crocodylus porosus and addresses the potential impacts of miRNAs in regulating the genome in the saltwater crocodile. In addition, the data suggests a supporting role of TEs as a source for miRNAs, adding to the increasing evidence that TEs play a significant role in the evolution of gene regulation.


Assuntos
Elementos de DNA Transponíveis/genética , MicroRNAs/genética , Jacarés e Crocodilos , Animais , Biblioteca Gênica , Salinidade
4.
J Nematol ; 51: 1-2, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31088025

RESUMO

The reniform nematode (Rotylenchulus reniformis) is a sedentary semi-endoparasitic species that is pathogenic on many row crops, fruits, and vegetables. Here, the authors present a draft genome assembly of R. reniformis using small- and large-insert libraries sequenced on the Illumina GAIIx and MiSeq platforms.The reniform nematode (Rotylenchulus reniformis) is a sedentary semi-endoparasitic species that is pathogenic on many row crops, fruits, and vegetables. Here, the authors present a draft genome assembly of R. reniformis using small- and large-insert libraries sequenced on the Illumina GAIIx and MiSeq platforms.

5.
BMC Genomics ; 15: 755, 2014 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-25183458

RESUMO

BACKGROUND: Bacterial panicle blight caused by the bacterium Burkholderia glumae is an emerging disease of rice in the United States. Not much is known about this disease, the disease cycle or any source of disease resistance. To understand the interaction between rice and Burkholderia glumae, we used transcriptomics via next-generation sequencing (RNA-Seq) and bioinformatics to identify differentially expressed transcripts between resistant and susceptible interactions and formulate a model for rice resistance to the disease. RESULTS: Using inoculated young seedlings as sample tissues, we identified unique transcripts involved with resistance to bacterial panicle blight, including a PIF-like ORF1 and verified differential expression of some selected genes using qRT-PCR. These transcripts, which include resistance genes of the NBS-LRR type, kinases, transcription factors, transporters and expressed proteins with functions that are not known, have not been reported in other pathosystems including rice blast or bacterial blight. Further, functional annotation analysis reveals enrichment of defense response and programmed cell death (biological processes); ATP and protein binding (molecular functions); and mitochondrion-related (cell component) transcripts in the resistant interaction. CONCLUSION: Taken together, we formulated a model for rice resistance to bacterial panicle blight that involves an activation of previously unknown resistance genes and their activation partners upon challenge with B. glumae. Other interesting findings are that 1) though these resistance transcripts were up-regulated upon inoculation in the resistant interaction, some of them were already expressed in the water-inoculated control from the resistant genotype, but not in the water- and bacterium-inoculated samples from the susceptible genotype; 2) rice may have co-opted an ORF that was previously a part of a transposable element to aid in the resistance mechanism; and 3) resistance may have existed immediately prior to rice domestication.


Assuntos
Burkholderia , Interações Hospedeiro-Patógeno/genética , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Transcriptoma , Mapeamento Cromossômico , Biologia Computacional , Resistência à Doença/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Predisposição Genética para Doença , Anotação de Sequência Molecular , Fenótipo , Reprodutibilidade dos Testes
6.
Proc Natl Acad Sci U S A ; 108(26): 10756-61, 2011 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-21653885

RESUMO

Annual plants grow vegetatively at early developmental stages and then transition to the reproductive stage, followed by senescence in the same year. In contrast, after successive years of vegetative growth at early ages, woody perennial shoot meristems begin repeated transitions between vegetative and reproductive growth at sexual maturity. However, it is unknown how these repeated transitions occur without a developmental conflict between vegetative and reproductive growth. We report that functionally diverged paralogs FLOWERING LOCUS T1 (FT1) and FLOWERING LOCUS T2 (FT2), products of whole-genome duplication and homologs of Arabidopsis thaliana gene FLOWERING LOCUS T (FT), coordinate the repeated cycles of vegetative and reproductive growth in woody perennial poplar (Populus spp.). Our manipulative physiological and genetic experiments coupled with field studies, expression profiling, and network analysis reveal that reproductive onset is determined by FT1 in response to winter temperatures, whereas vegetative growth and inhibition of bud set are promoted by FT2 in response to warm temperatures and long days in the growing season. The basis for functional differentiation between FT1 and FT2 appears to be expression pattern shifts, changes in proteins, and divergence in gene regulatory networks. Thus, temporal separation of reproductive onset and vegetative growth into different seasons via FT1 and FT2 provides seasonality and demonstrates the evolution of a complex perennial adaptive trait after genome duplication.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/fisiologia , Duplicação Gênica , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Populus/genética , Populus/crescimento & desenvolvimento , Populus/fisiologia , Reprodução/genética
7.
Poult Sci ; 103(10): 104067, 2024 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-39067129

RESUMO

Avian pathogenic Escherichia coli (APEC) cause avian colibacillosis and accurately distinguishing infectious isolates is critical for controlling its transmission. Multilocus sequence typing (MLST) is an accurate and efficient strain identification method for epidemiological surveillance. This research aimed to develop a fast and high-throughput workflow that simultaneously sequences the Achtman typing scheme's 7 housekeeping genes of multiple E. coli isolates using the Oxford Nanopore Technologies (ONT) platform for large-scale APEC study. E. coli strains were isolated from poultry farms, the housekeeping genes were amplified, and amplicons were sequenced on an R9.4 MinION flow cell using the Nanopore GridION sequencer (ONT, Oxford, UK) following the initial workflow (ONT-MLST). Moreover, the workflow was revised by introducing large-scale DNA extraction and multiplex PCR into the ONT-MLST workflow and applied to 242 new isolates, 18 isolates from the previous workflow, and 5 ATCC reference strains using Flongle flow cell on the Nanopore MinION Mk1C sequencer (ONT, Oxford, UK). Finally, the sequence type (ST) results of the 308 isolates collected from infected chickens and poultry farm environments were reported and analyzed. Data indicated that E. coli belonging to ST159, ST8578, and ST355 have the potential to infect multiple organs in broiler. In addition, zoonotic STs, ST69, ST10, ST38, and ST131, were detected from poultry farms. With the advantages of the high throughput of ONT, this study provides a rapid workflow for large-scale E. coli typing and identified frequently isolated sequence types related to APEC infection in poultry.

8.
G3 (Bethesda) ; 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39103179

RESUMO

Island species are highly vulnerable due to habitat destruction and their often small population sizes with reduced genetic diversity. The Hawaiian Islands constitute the most isolated archipelago on the planet, harboring many endemic species. Kokia is an endangered flowering plant genus endemic to these islands, encompassing three extant and one extinct species. Recent studies provided evidence of unexpected genetic diversity within Kokia. Here, we provide high quality genome assemblies for all three extant Kokia species, including an improved genome for K. drynarioides. All three Kokia genomes contain 12 chromosomes exhibiting high synteny within and between Kokia and the sister taxon Gossypioides kirkii. Gene content analysis revealed a net loss of genes in K. cookei compared to other species, whereas the gene complement in K. drynarioides remains stable and that of K. kauaiensis displays a net gain. A dated phylogeny estimates the divergence time from the last common ancestor for the three Kokia species at ∼1.2 million years ago (mya), with the sister taxa [K. cookei + K. drynarioides] diverging ∼0.8 mya. Kokia appears to have followed a stepping-stone pattern of colonization and diversification of the Hawaiian Archipelago, likely starting on low or now submerged older islands. The genetic resources provided may benefit conservation efforts of this endangered endemic genus.

9.
Microbiol Resour Announc ; 13(6): e0102023, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38682772

RESUMO

We report the whole-genome sequences of Escherichia coli strains APEC-O2-MS1266 and APEC-O2-MS1657 isolated from the liver and heart of infected broilers in Mississippi State, US. The genomic information of these two causative strains may provide a valuable reference for comparative studies of avian pathogenic E. coli.

10.
Poult Sci ; 103(3): 103398, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38194832

RESUMO

Previous work has shown that dietary treatments affect woody breast (WB) incidence differently, which indicates that gut conditions such as gut barrier function, inflammation, and oxidative stress are likely related to WB. In this study, dietary supplementation with antibiotics (bacitracin) or probiotics (Bacillus subtilis) was investigated for their effects on the expression of transcripts related to gut barrier function, inflammation, and oxidative stress in the mucus lining of the jejunum from broilers with or without WB. A split-plot experimental design was used in this study. The dietary treatments served as the main plot factor and the breast muscle condition was the subplot factor. On d 41, jejunum mucus was collected from 1 bird from each of 3 replicate pens in each 3 dietary treatment groups that exhibited WB and an additional bird that contained a normal breast (3 biological replicates/treatment/phenotype; 3 × 3 × 2, total N = 18). Total RNA was extracted using a commercial RNA extraction kit. The expression levels of CLDN1, MUC6, TLR2A, TLR2B, TLR4, IFN-γ, IL-1ß, IL-8L1, IL-10, NOS2, and SOD were determined using 2-step RT-qPCR analysis. The gene expression difference in ΔCt values was determined after normalizing with the chicken 18S rRNA gene. When the significant differences occurred between treatments, the relative fold change was calculated using the ΔΔCt method and the significance level was calculated. The PROC GLM procedure of SAS 9.4 was used, and the level of significance was set at P ≤ 0.05. There were no significant interactive effects between diet and the breast muscle condition on the expression of any of the genes tested. However, birds with WB exhibited higher MUC6 (P < 0.0001) gene expression levels than birds with normal breast muscles. In addition, the expression of SOD decreased in birds that were fed the antibiotic diet when compared to birds that were fed the probiotic diet (P = 0.014). In conclusion, WB identified in broilers tested in the current study is attributed to increased expression of mucin, indicating a correlation between WB incidence and gel-forming mucin secretion and pathogen signaling.


Assuntos
Galinhas , Doenças Musculares , Animais , Galinhas/genética , Doenças Musculares/genética , Doenças Musculares/veterinária , Muco , Antibacterianos , Inflamação/veterinária , Mucinas , Expressão Gênica , RNA , Superóxido Dismutase
11.
Sci Rep ; 14(1): 14046, 2024 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890398

RESUMO

Elucidating genetic diversity within wild forms of modern crops is essential for understanding domestication and the possibilities of wild germplasm utilization. Gossypium hirsutum is a predominant source of natural plant fibers and the most widely cultivated cotton species. Wild forms of G. hirsutum are challenging to distinguish from feral derivatives, and truly wild populations are uncommon. Here we characterize a population from Mound Key Archaeological State Park, Florida using genome-wide SNPs extracted from 25 individuals over three sites. Our results reveal that this population is genetically dissimilar from other known wild, landrace, and domesticated cottons, and likely represents a pocket of previously unrecognized wild genetic diversity. The unexpected level of divergence between the Mound Key population and other wild cotton populations suggests that the species may harbor other remnant and genetically distinct populations that are geographically scattered in suitable habitats throughout the Caribbean. Our work thus has broader conservation genetic implications and suggests that further exploration of natural diversity in this species is warranted.


Assuntos
Variação Genética , Gossypium , Polimorfismo de Nucleotídeo Único , Florida , Gossypium/genética , Filogenia , Domesticação , Genética Populacional , Genoma de Planta
12.
Poult Sci ; 102(5): 102592, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36972674

RESUMO

Campylobacter jejuni (C. jejuni) is the most common food-borne pathogen that causes human gastroenteritis in the United States. Consumption of contaminated poultry products is considered as the major source of human Campylobacter infection. An effective vaccine would be a promising alternative to antibiotic supplements to curb C. jejuni colonization in poultry gastrointestinal (GI) tract. However, the genetic diversity among the C. jejuni isolates makes vaccine production more challenging. Despite many attempts, an effective Campylobacter vaccine is not yet available. This study aimed to identify suitable candidates to develop a subunit vaccine against C. jejuni, which could reduce colonization in the GI tract of the poultry. In the current study, 4 C. jejuni strains were isolated from retail chicken meat and poultry litter samples and their genomes were sequenced utilizing next-generation sequencing technology. The genomic sequences of C. jejuni strains were screened to identify potential antigens utilizing the reverse vaccinology approach. In silico genome analysis predicted 3 conserved potential vaccine candidates (phospholipase A [PldA], TonB dependent vitamin B12 transporter [BtuB], and cytolethal distending toxin subunit B [CdtB]) suitable for the development of a vaccine. Furthermore, the expression of predicted genes during host-pathogen interaction was analyzed by an infection study using an avian macrophage-like immortalized cell line (HD11). The HD11 was infected with C. jejuni strains, and the RT-qPCR assay was performed to determine the expression of the predicted genes. The expression difference was analyzed using ΔΔCt methods. The results indicate that all 3 predicted genes, PldA, BtuB, and CdtB, were upregulated in 4 tested C. jejuni strains irrespective of their sources of isolation. In conclusion, in silico prediction and gene expression analysis during host-pathogen interactions identified 3 potential vaccine candidates for C. jejuni.


Assuntos
Infecções por Campylobacter , Campylobacter jejuni , Campylobacter , Vacinas , Animais , Humanos , Campylobacter jejuni/genética , Genes Bacterianos , Galinhas/genética , Infecções por Campylobacter/prevenção & controle , Infecções por Campylobacter/veterinária , Infecções por Campylobacter/genética , Aves Domésticas
13.
G3 (Bethesda) ; 13(3)2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36639248

RESUMO

Labeo rohita (rohu) is a carp important to aquaculture in South Asia, with a production volume close to Atlantic salmon. While genetic improvements to rohu are ongoing, the genomic methods commonly used in other aquaculture improvement programs have historically been precluded in rohu, partially due to the lack of a high-quality reference genome. Here we present a high-quality de novo genome produced using a combination of next-generation sequencing technologies, resulting in a 946 Mb genome consisting of 25 chromosomes and 2,844 unplaced scaffolds. Notably, while approximately half the size of the existing genome sequence, our genome represents 97.9% of the genome size newly estimated here using flow cytometry. Sequencing from 120 individuals was used in conjunction with this genome to predict the population structure, diversity, and divergence in three major rivers (Jamuna, Padma, and Halda), in addition to infer a likely sex determination mechism in rohu. These results demonstrate the utility of the new rohu genome in modernizing some aspects of rohu genetic improvement programs.


Assuntos
Carpas , Cyprinidae , Humanos , Animais , Carpas/genética , Fluxo Gênico , Cyprinidae/genética , Tamanho do Genoma , Cromossomos
14.
Plant Biotechnol J ; 10(2): 207-16, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21910820

RESUMO

Heavy metal accumulation in the environment poses great risks to flora and fauna. However, monitoring sites prone to accumulation poses scale and economic challenges. In this study, we present and test a method for monitoring these sites using fluorescent resonance energy transfer (FRET) change in response to zinc (Zn) accumulation in plants as a proxy for environmental health. We modified a plant Zn transport protein by adding flanking fluorescent proteins (FPs) and deploying the construct into two different species. In Arabidopsis thaliana, FRET was monitored by a confocal microscope and had a 1.4-fold increase in intensity as the metal concentration increased. This led to a 16.7% overall error-rate when discriminating between a control (1µm Zn) and high (10mm Zn) treatment after 96h. The second host plant (Populus tremula×Populu salba) also had greater FRET values (1.3-fold increase) when exposed to the higher concentration of Zn, while overall error-rates were greater at 22.4%. These results indicate that as plants accumulate Zn, protein conformational changes occur in response to Zn causing differing interaction between FPs. This results in greater FRET values when exposed to greater amounts of Zn and monitored with appropriate light sources and filters. We also demonstrate how this construct can be moved into different host plants effectively including one tree species. This chimeric protein potentially offers a method for monitoring large areas of land for Zn accumulation, is transferable among species, and could be modified to monitor other specific heavy metals that pose environmental risks.


Assuntos
Técnicas Biossensoriais/métodos , Proteínas de Transporte de Cátions/metabolismo , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas de Plantas/metabolismo , Poluentes do Solo/análise , Zinco/análise , Arabidopsis/química , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Transporte de Cátions/química , Proteínas de Transporte de Cátions/genética , Monitoramento Ambiental/métodos , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microscopia de Fluorescência , Proteínas de Plantas/química , Proteínas de Plantas/genética , Populus/química , Populus/genética , Populus/metabolismo , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Poluentes do Solo/farmacocinética , Zinco/farmacocinética
15.
Front Plant Sci ; 13: 805101, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185983

RESUMO

Both the evolution of tree taxa and whole-genome duplication (WGD) have occurred many times during angiosperm evolution. Transcription factors are preferentially retained following WGD suggesting that functional divergence of duplicates could contribute to traits distinctive to the tree growth habit. We used gain- and loss-of-function transgenics, photoperiod treatments, and circannual expression studies in adult trees to study the diversification of three Populus FLOWERING LOCUS D-LIKE (FDL) genes encoding bZIP transcription factors. Expression patterns and transgenic studies indicate that FDL2.2 promotes flowering and that FDL1 and FDL3 function in different vegetative phenophases. Study of dominant repressor FDL versions indicates that the FDL proteins are partially equivalent in their ability to alter shoot growth. Like its paralogs, FDL3 overexpression delays short day-induced growth cessation, but also induces distinct heterochronic shifts in shoot development-more rapid phytomer initiation and coordinated delay in both leaf expansion and the transition to secondary growth in long days, but not in short days. Our results indicate that both regulatory and protein coding sequence variation contributed to diversification of FDL paralogs that has led to a degree of specialization in multiple developmental processes important for trees and their local adaptation.

16.
Microbiol Resour Announc ; 11(10): e0089822, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36106891

RESUMO

Campylobacter jejuni is the leading pathogen that causes foodborne infections. Here, we report the complete genome sequences of four C. jejuni strains isolated from retail chicken meat and broiler feces samples. Genes encoding type VI secretion and antibiotic resistance were detected among these isolates.

17.
Poult Sci ; 101(8): 101960, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35690000

RESUMO

Study suggested that dysbiosis of the gut microbiota may affect the etiology of woody breast (WB). In the current study, the cecal microbiota and WB in chickens fed three different diets were investigated. A total of 504 male chicks were used in a randomized complete block design with a 3 (Diet) × 2 (Challenge) factorial arrangement of treatments with 6 replicates per treatment, 6 treatments per block, and 14 birds per treatment. The experimental diets were a control diet (corn-soybean meal basal diet), an antibiotic diet (basal diet + 6.075 mg bacitracin/kg feed), and a probiotic diet (basal diet + 2.2 × 108 CFU Bacillus subtilis PB6/kg feed). On d 14, birds that were assigned to the challenge treatment received a 20 × live cocci vaccine. On d 41, breast muscle hardness in live birds was palpated and grouped into normal (NB) and WB phenotypes. Cecal contents were collected and their bacterial compositions were analyzed and compared. The genomic DNA of the cecal contents was extracted and the V3 and V4 regions of 16S rRNA gene were amplified and sequenced via an Illumina MiSeq platform. There were no differences (P > 0.05) in Shannon and Chao 1 indexes between the challenges, diets, and phenotypes (NB vs. WB). However, there was a difference (P = 0.001) in the beta diversity of the samples between the challenged and nonchallenged groups. Relative bacterial abundance differed (false discovery rate, FDR < 0.05) between the challenge treatments, but there were no significant differences (FDR > 0.05) among the three diets or two phenotypes. Predicted energy metabolism, nucleotide metabolism, and amino acid and coenzyme biosynthesis activities only differed (q-value < 0.05) between challenged and nonchallenged groups. The cocci challenge altered the gut microbial composition on Butyricicoccus pullicaecorum, Sporobacter termitidis, and Subdoligranulum variabile, but the dietary antibiotic and probiotic treatments did not impact gut microbial composition. No strong association was found between WB myopathy and gut microbial composition in this study.


Assuntos
Eimeria , Microbioma Gastrointestinal , Doenças Musculares , Doenças das Aves Domésticas , Ração Animal/análise , Animais , Antibacterianos , Bacillus subtilis/química , Bacitracina , Galinhas/metabolismo , Dieta/veterinária , Suplementos Nutricionais/análise , Eimeria/fisiologia , Masculino , Doenças Musculares/veterinária , Doenças das Aves Domésticas/microbiologia , RNA Ribossômico 16S/metabolismo
18.
J Exp Bot ; 62(11): 3737-52, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21504875

RESUMO

Perennial woody species, such as poplar (Populus spp.) must acquire necessary heavy metals like zinc (Zn) while avoiding potential toxicity. Poplar contains genes with sequence homology to genes HMA4 and PCS1 from other species which are involved in heavy metal regulation. While basic genomic conservation exists, poplar does not have a hyperaccumulating phenotype. Poplar has a common indicator phenotype in which heavy metal accumulation is proportional to environmental concentrations but excesses are prevented. Phenotype is partly affected by regulation of HMA4 and PCS1 transcriptional abundance. Wild-type poplar down-regulates several transcripts in its Zn-interacting pathway at high Zn levels. Also, overexpressed PtHMA4 and PtPCS1 genes result in varying Zn phenotypes in poplar; specifically, there is a doubling of Zn accumulation in leaf tissues in an overexpressed PtPCS1 line. The genomic complement and regulation of poplar highlighted in this study supports a role of HMA4 and PCS1 in Zn regulation dictating its phenotype. These genes can be altered in poplar to change its interaction with Zn. However, other poplar genes in the surrounding pathway may maintain the phenotype by inhibiting drastic changes in heavy metal accumulation with a single gene transformation.


Assuntos
Adenosina Trifosfatases/metabolismo , Aminoaciltransferases/metabolismo , Proteínas de Plantas/metabolismo , Populus/genética , Zinco/metabolismo , Adenosina Trifosfatases/genética , Aminoaciltransferases/genética , Genótipo , Homeostase , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Populus/enzimologia , Populus/crescimento & desenvolvimento , Populus/metabolismo
19.
BMC Genomics ; 11: 674, 2010 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-21114852

RESUMO

BACKGROUND: Riverine ecosystems, highly sensitive to climate change and human activities, are characterized by rapid environmental change to fluctuating water levels and siltation, causing stress on their biological components. We have little understanding of mechanisms by which riverine plant species have developed adaptive strategies to cope with stress in dynamic environments while maintaining growth and development. RESULTS: We report that poplar (Populus spp.) has evolved a systems level "stress proteome" in the leaf-stem-root apoplast continuum to counter biotic and abiotic factors. To obtain apoplast proteins from P. deltoides, we developed pressure-chamber and water-displacement methods for leaves and stems, respectively. Analyses of 303 proteins and corresponding transcripts coupled with controlled experiments and bioinformatics demonstrate that poplar depends on constitutive and inducible factors to deal with water, pathogen, and oxidative stress. However, each apoplast possessed a unique set of proteins, indicating that response to stress is partly compartmentalized. Apoplast proteins that are involved in glycolysis, fermentation, and catabolism of sucrose and starch appear to enable poplar to grow normally under water stress. Pathogenesis-related proteins mediating water and pathogen stress in apoplast were particularly abundant and effective in suppressing growth of the most prevalent poplar pathogen Melampsora. Unexpectedly, we found diverse peroxidases that appear to be involved in stress-induced cell wall modification in apoplast, particularly during the growing season. Poplar developed a robust antioxidative system to buffer oxidation in stem apoplast. CONCLUSION: These findings suggest that multistress response in the apoplast constitutes an important adaptive trait for poplar to inhabit dynamic environments and is also a potential mechanism in other riverine plant species.


Assuntos
Matriz Extracelular/metabolismo , Espaço Intracelular/metabolismo , Proteínas de Plantas/metabolismo , Populus/metabolismo , Proteoma/metabolismo , Estresse Fisiológico , Antioxidantes/metabolismo , Parede Celular/efeitos dos fármacos , Parede Celular/metabolismo , Análise por Conglomerados , Secas , Matriz Extracelular/efeitos dos fármacos , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Redes Reguladoras de Genes/efeitos dos fármacos , Humanos , Espaço Intracelular/efeitos dos fármacos , Modelos Biológicos , Filogenia , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Populus/efeitos dos fármacos , Populus/genética , Proteômica , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Estresse Fisiológico/efeitos dos fármacos , Água/farmacologia
20.
J Exp Bot ; 61(10): 2549-60, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20406786

RESUMO

Expression of FLOWERING LOCUS T (FT) and its homologues has been shown to accelerate the onset of flowering in a number of plant species, including poplar (Populus spp.). The application of FT should be of particular use in forest trees, as it could greatly accelerate and enable new kinds of breeding and research. Recent evidence showing the extent to which FT is effective in promoting flowering in trees is discussed, and its effectiveness in poplar is reported. Results using one FT gene from Arabidopsis and two from poplar, all driven by a heat-inducible promoter, transformed into two poplar genotypes are also described. Substantial variation in flowering response was observed depending on the FT gene and genetic background. Heat-induced plants shorter than 30 cm failed to flower as well as taller plants. Plants exposed to daily heat treatments lasting 3 weeks tended to produce fewer abnormal flowers than those in heat treatments of shorter durations; increasing the inductive temperature from 37 degrees C to 40 degrees C produced similar benefits. Using optimal induction conditions, approximately 90% of transgenic plants could be induced to flower. When induced FT rootstocks were grafted with scions that lacked FT, flowering was only observed in rootstocks. The results suggest that a considerable amount of species- or genotype-specific adaptation will be required to develop FT into a reliable means for shortening the generation cycle for breeding in poplar.


Assuntos
Botânica/métodos , Cruzamento , Flores/genética , Genes de Plantas/genética , Proteínas de Plantas/genética , Populus/genética , Árvores/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Células Clonais , Flores/anatomia & histologia , Flores/crescimento & desenvolvimento , Frutas/anatomia & histologia , Genótipo , Temperatura Alta , Proteínas de Plantas/metabolismo , Pólen/crescimento & desenvolvimento , Populus/anatomia & histologia , Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA