Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Crit Rev Food Sci Nutr ; : 1-19, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922612

RESUMO

The nutritional benefits of combining probiotics with plant proteins have sparked increasing research interest and drawn significant attention. The interactions between plant proteins and probiotics demonstrate substantial potential for enhancing the functionality of plant proteins. Fermented plant protein foods offer a unique blend of bioactive components and beneficial microorganisms that can enhance gut health and combat chronic diseases. Utilizing various probiotic strains and plant protein sources opens doors to develop innovative probiotic products with enhanced functionalities. Nonetheless, the mechanisms and synergistic effects of these interactions remain not fully understood. This review aims to delve into the roles of promoting health through the intricate interplay of plant proteins and probiotics. The regulatory mechanisms have been elucidated to showcase the synergistic effects, accompanied by a discussion on the challenges and future research prospects. It is essential to recognize that the interactions between plant proteins and probiotics encompass multiple mechanisms, highlighting the need for further research to address challenges in achieving a comprehensive understanding of these mechanisms and their associated health benefits.

2.
Crit Rev Food Sci Nutr ; : 1-11, 2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36384368

RESUMO

Edible microcarriers are essential for developing cell-based meat in large-scale cell cultures. As they are required to be embedded in the final products, the microcarriers should be edible, biocompatible, cost-effective, and pathogen-free. The invention of edible animal-free microcarriers would be a breakthrough for cell-based meat culture. We reviewed the fabrication techniques and the materials of microcarriers, and found that plant proteins, having diverse structures and composition, could possess the active domains that are hypnotized to replace the animal-based extracellular matrix (ECM) for meat culture applications. In addition, the bioactive peptides in plants have been reviewed and most of them were resulted from enzyme hydrolysis. Therefore, plant proteins with rich bioactive peptides have the potential in the development microcarriers. Our work provided some new trains of thought for developing plant-based biomaterials as ECM materials and advances the fabrication of microcarriers for meat culture.

3.
Crit Rev Food Sci Nutr ; 62(7): 1890-1911, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-33249876

RESUMO

In recent years, food manufacturers are increasingly utilizing enzymes in the production of fruit-based (unfermented and fermented) products to increase yield and maximize product quality in a cost-effective manner. Depending on the fruits and desired product characteristics, different enzymes (e.g. pectinase, cellulase, hemicellulase, amylase, and protease) are used alone or in combinations to achieve optimized processing conditions and improve nutritional and sensorial quality. In this review, the mechanisms of action and sources of different enzymes, as well as their effects on the physicochemical, nutritional, and organoleptic properties of unfermented and fermented fruit-based products are summarized and discussed, respectively. In general, the application of enzymatic hydrolysis treatment (EHT) in unfermented fruit-based product helps to achieve four main purposes: (i) viscosity reduction (easy to filter), (ii) clarification (improved appearance/clarity), (iii) better nutritional quality (increase in polyphenolics) and (iv) enhanced organoleptic characteristic (brighter color and complex aroma profile). In addition, EHT provides numerous other advantages to fermented fruit-based products such as better fermentation efficiency and enrichment in aroma. To meet the demand for new market trends, researchers and manufacturers are increasingly employing non-Saccharomyces yeast (with enzymatic activities) alone or in tandem with Saccharomyces cerevisiae to produce complex flavor profile in fermented fruit-based products. Therefore, this review also evaluates the potential of some non-Saccharomyces yeasts with enzymatic activities and how their utilization helps to tailor wines with unique aroma profile. Lastly, in view of an increase in lactose-intolerant individuals, the potential of fermented probiotic fruit juice as an alternative to dairy-based probiotic products is discussed.


Assuntos
Frutas , Vinho , Fermentação , Frutas/química , Humanos , Poligalacturonase , Saccharomyces cerevisiae , Vinho/análise
4.
Crit Rev Food Sci Nutr ; : 1-15, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35912423

RESUMO

The poor lipophilicity and instability of water-soluble polyphenols limit their bioavailability and application in food. However, increasing attention has been given to water-soluble polyphenols due to their multiple biological activities, which prompts the modification of the structure of water-soluble polyphenols to improve their lipophilicity and stability and enable more efficient application. This review presents the enzymatic biosynthesis of lipophilic derivatives of water-soluble polyphenols, which will change the molecular structure of water-soluble polyphenols based on the loss of hydroxyl or carboxyl groups. Therefore, the effects of reaction factors on the structure of polyphenol derivatives and the change in their bioactivities will be further analyzed. Previous studies have shown that lipases, solvent systems, and hydrophobic groups are major factors influencing the synthesis and lipophilicity of polyphenol derivatives. Moreover, the biological activities of polyphenol derivatives were changed to a certain extent, such as through the enhancement or weakening of antioxidant activity in different systems and the increase in anti-influenza virus activity and antibacterial activity. The improvement of lipophilicity also expands polyphenol application in food. This review may contribute to the efficient synthesis of lipophilic derivatives of water-soluble polyphenols to extend the utilization and application range of polyphenols.

5.
Anal Bioanal Chem ; 414(8): 2651-2660, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35165778

RESUMO

In this work, green-emitting carbon quantum dots were successfully prepared through a facile one-step solid-state reaction method. The obtained green-emitting carbon dots (G-CDs) showed good fluorescence stability in NaCl aqueous solution and different pH values. Moreover, the G-CDs showed high sensitivity and selectivity for detecting hypochlorite by both fluorometry and colorimetry. Under the optimized condition, a highly sensitive detection of hypochlorite was established in the range of 0.2-100 µM and 10-150 µM for fluorescent and colorimetric methods, respectively. The corresponding limits of detection (LOD) were 0.0781 µM and 1.82 µM, respectively. Therefore, the G-CDs were successfully applied to determinate hypochlorite in actual water samples. In addition, a paper-based sensor loading with the G-CDs was also developed for rapid visual detection of hypochlorite. The results suggested that the G-CDs could be a promising candidate to detect hypochlorite.

6.
J Nutr ; 150(8): 2131-2138, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32533770

RESUMO

BACKGROUND: Although polyphenol-rich cranberry extracts reportedly have an antiobesity effect, the exact reason for this remains unclear. OBJECTIVES: In light of the reported health benefits of the polyphenolic compounds in cranberry, we investigated the effects and mechanism of a cranberry polyphenolic extract (CPE) in high-fat diet (HFD)-fed obese mice. METHODS: The distributions of individual CPE compounds were characterized by HPLC fingerprinting. Male C57BL/6J mice (4 wk old) were fed for 16 wk normal diet (ND, 10% fat energy) or HFD (60% fat energy) with or without 0.75% CPE in drinking water (HFD + CPE). Body and adipose depot weights, indices of glucose metabolism, energy expenditure (EE), and expression of genes related to brown adipose tissue (BAT) thermogenesis, and inguinal/epididymal white adipose tissue (iWAT/eWAT) browning were measured. RESULTS: After 16 wk, the body weight was 22.5% lower in the CPE-treated mice than in the HFD group but remained 17.9% higher than in the ND group. CPE treatment significantly increased EE compared with that of the ND and HFD groups. The elevated EE was linked with BAT thermogenesis, and iWAT/eWAT browning, shown by the induction of thermogenic genes, especially uncoupling protein 1 (Ucp1), and browning-related genes, including Cd137, a member of the tumor necrosis factor receptor superfamily (Tnfrsf9). The mRNA expression and abundance of uncoupling protein 1 in BAT of CPE-fed mice were 5.78 and 1.47 times higher than in the HFD group, and 0.61 and 1.12 times higher than in the ND group, respectively. Cd137 gene expression in iWAT and eWAT of CPE-fed mice were 2.35 and 3.13 times higher than in the HFD group, and 0.84 and 1.39 times higher than in the ND group, respectively. CONCLUSIONS: Dietary CPE reduced but did not normalize HFD-induced body weight gain in male C57BL/6J mice, possibly by affecting energy metabolism.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Obesidade/induzido quimicamente , Obesidade/prevenção & controle , Extratos Vegetais/farmacologia , Polifenóis/farmacologia , Vaccinium macrocarpon/química , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Extratos Vegetais/química , Polifenóis/química , Termogênese/efeitos dos fármacos
7.
Pharmacol Res ; 159: 104961, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32474086

RESUMO

Cardiovascular diseases are recognized to be a major cause of people morbidity and mortality. A host of stress signals contribute to the pathogenesis of cardiovascular disorders. Deficiency of hydrogen sulfide (H2S) or nitric oxide (NO) coordinately plays essential roles in the development of cardiovascular diseases. Recent studies have shown that interaction between the two gaseostransmitters, H2S and NO, may give rise to nitroxyl (HNO), one-electron-reduced product of NO. HNO is found to exhibit a variety of biological and pharmacological properties including positive inotropy and cardiovascular protective effects, etc. In this review, recent progresses regarding HNO generation, detection, biochemical and pharmacological functions are discussed.


Assuntos
Fármacos Cardiovasculares/uso terapêutico , Doenças Cardiovasculares/tratamento farmacológico , Sistema Cardiovascular/efeitos dos fármacos , Óxidos de Nitrogênio/uso terapêutico , Animais , Fármacos Cardiovasculares/efeitos adversos , Doenças Cardiovasculares/metabolismo , Doenças Cardiovasculares/fisiopatologia , Sistema Cardiovascular/metabolismo , Sistema Cardiovascular/fisiopatologia , Humanos , Sulfeto de Hidrogênio/metabolismo , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/uso terapêutico , Óxidos de Nitrogênio/efeitos adversos , Óxidos de Nitrogênio/metabolismo
8.
Org Biomol Chem ; 18(39): 7916-7921, 2020 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-32996914

RESUMO

We disclose an efficient methodology for olefin alkoxylation of fluorescent BODIPYs (boron-dipyrromethene) at the 3,5-styryl group with methanol by cupric halide (chloride or bromide) at room temperature. Mechanistic studies provide evidence for the alkoxylation reaction firstly initiated by a radical cation, that is, halide promotes the oxidizing ability of the Cu(ii) center to an extent that the single electron transfer (SET) from BODIPYs to the cupric ion and results in the production of a BODIPYs radical cation and Cu(i), then the BODIPYs radical cation subsequently reacts with methanol to afford the alkoxylated product. As the dialkoxylated product complexes with cuprous halide and further decreases its reducing ability, which is supported by DFT calculations, only strongly oxidative cupric bromide can mediate tetraalkoxylation and give rise to the tetraalkoxylated product. In addition, the expanded scope studies suggest that this method is also well suited for the alkoxylation of electron-rich conjugated olefins. The active benzyl bromide derivative may be another intermediate in the presence of cupric bromide. Therefore, the reaction is highly dependent on the anions of cupric salts; Cu(OAc)2, CuSO4 and Cu(NO3)2 containing weakly nucleophilic anions show no activity in alkoxylation.

9.
Int J Mol Sci ; 20(9)2019 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-31083440

RESUMO

In this work, we developed quantitative structure-activity relationships (QSAR) models for prediction of oxygen radical absorbance capacity (ORAC) of flavonoids. Both linear (partial least squares-PLS) and non-linear models (artificial neural networks-ANNs) were built using parameters of two well-established antioxidant activity mechanisms, namely, the hydrogen atom transfer (HAT) mechanism defined with the minimum bond dissociation enthalpy, and the sequential proton-loss electron transfer (SPLET) mechanism defined with proton affinity and electron transfer enthalpy. Due to pronounced solvent effects within the ORAC assay, the hydration energy was also considered. The four-parameter PLS-QSAR model yielded relatively high root mean square errors (RMSECV = 0.783, RMSEE = 0.668, RMSEP = 0.900). Conversely, the ANN-QSAR model yielded considerably lower errors (RMSEE = 0.180 ± 0.059, RMSEP1 = 0.164 ± 0.128, and RMSEP2 = 0.151 ± 0.114) due to the inherent non-linear relationships between molecular structures of flavonoids and ORAC values. Five-fold cross-validation was found to be unsuitable for the internal validation of the ANN-QSAR model with a high RMSECV of 0.999 ± 0.253; which is due to limited sample size where resampling with replacement is a considerably better alternative. Chemical domains of applicability were defined for both models confirming their reliability and robustness. Based on the PLS coefficients and partial derivatives, both models were interpreted in terms of the HAT and SPLET mechanisms. Theoretical computations based on density functional theory at ωb97XD/6-311++G(d,p) level of theory were also carried out to further shed light on the plausible mechanism of anti-peroxy radical activity. Calculated energetics for simplified models (genistein and quercetin) with peroxyl radical derived from 2,2'-azobis (2-amidino-propane) dihydrochloride suggested that both SPLET and single electron transfer followed by proton loss (SETPL) mechanisms are competitive and more favorable than HAT in aqueous medium. The finding is in good accord with the ANN-based QSAR modelling results. Finally, the strongly predictive ANN-QSAR model was used to predict antioxidant activities for a series of 115 flavonoids designed combinatorially with flavone as a template. Structural trends were analyzed, and general guidelines for synthesis of new flavonoid derivatives with potentially potent antioxidant activities were given.


Assuntos
Antioxidantes/química , Antioxidantes/farmacologia , Simulação por Computador , Desenho de Fármacos , Flavonoides/química , Flavonoides/farmacologia , Modelos Moleculares , Relação Quantitativa Estrutura-Atividade , Hidrogênio/química , Análise dos Mínimos Quadrados , Redes Neurais de Computação , Dinâmica não Linear , Peróxidos/química , Padrões de Referência , Reprodutibilidade dos Testes , Soluções
10.
Anal Chem ; 90(22): 13249-13256, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30379067

RESUMO

Early and accurate assessment of therapeutic response to anticancer therapy plays an important role in determining treatment planning and patient management in clinic. Magnetic rseonance imaging (MRI) of necrosis that occurs after cancer therapies provides chances for that. Here, we reported three novel MRI contrast agents, GdL1, GdL2, and GdL3, by conjugating rhein with gadolinium 2-[4,7,10-tris(carboxymethyl)-1,4,7,10-tetraazacyclododec-1-yl]acetic acid (Gd-DOTA) through different linkers. The T1 relaxivities of three probes (7.28, 7.35, and 8.03 mM-1 s-1) were found to be higher than that of Gd-DOTA (4.28 mM-1 s-1). Necrosis avidity of GdL1 was evaluated on the rat models of reperfused liver infarction (RLI) by MRI, which showed an increase of T1-weighted contrast between necrotic and normal liver during 0.5-12 h. Besides, L1 was also labeled with 64Cu to assess its necrosis avidity on rat models of RLI and muscle necrosis (MN) by a γ-counter. The uptakes of 64CuL1 in necrotic liver and muscle were higher than those in normal liver and muscle ( P < 0.05). Then, the ability of GdL1 to assess therapeutic response was tested on rats bearing Walker 256 breast carcinoma injected with a vascular disrupting agent CA4P by MR imaging. The signal intensity of tumoral necrosis was strongly enhanced, and the contrast ratio between necrotic and viable tumor was 1.63 ± 0.11 at 3 h after administration of GdL1. Besides, exposed DNA in necrosis cells may be an important mechanism of three probes targeting to necrosis cells. In summary, GdL1 may serve as a promising MRI contrast agent for accurate assessment of treatment response.


Assuntos
Antraquinonas/química , Meios de Contraste/química , Compostos Heterocíclicos/química , Necrose/diagnóstico , Compostos Organometálicos/química , Animais , Antraquinonas/síntese química , Antraquinonas/metabolismo , Antraquinonas/toxicidade , Neoplasias da Mama/patologia , Carcinoma/patologia , Linhagem Celular Tumoral , Meios de Contraste/síntese química , Meios de Contraste/metabolismo , Meios de Contraste/toxicidade , Radioisótopos de Cobre/química , DNA/química , Compostos Heterocíclicos/síntese química , Compostos Heterocíclicos/metabolismo , Compostos Heterocíclicos/toxicidade , Humanos , Infarto/patologia , Substâncias Intercalantes/síntese química , Substâncias Intercalantes/química , Substâncias Intercalantes/metabolismo , Substâncias Intercalantes/toxicidade , Fígado/patologia , Imageamento por Ressonância Magnética/métodos , Masculino , Músculos/patologia , Compostos Organometálicos/síntese química , Compostos Organometálicos/metabolismo , Compostos Organometálicos/toxicidade , Ratos Sprague-Dawley , Traumatismo por Reperfusão/patologia
11.
Molecules ; 23(6)2018 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-29914098

RESUMO

Durian fruit is rich in volatile sulfur compounds (VSCs), especially thiols and disulfides, which contribute to its onion-like odor. After fermentation, these VSCs were reduced to trace or undetectable levels in durian wine. The possible reduction mechanism of these VSCs (especially diethyl disulfide and ethanethiol) was investigated in a modified buffer in the presence of sulfite at different pH. An interconversion between diethyl disulfide and ethanethiol was found to be dependent on the pH: the higher the pH, the higher production of ethanethiol. It is suggested that, during durian wine fermentation, disulfides endogenous to durian pulp might be firstly converted into their corresponding thiols in the presence of reductant sulfite formed by yeast. The produced thiols as well as the thiols endogenous to the durian pulp were then removed by the mannoproteins of yeast lees.


Assuntos
Bombacaceae/química , Compostos de Enxofre/análise , Vinho/análise , Fermentação , Concentração de Íons de Hidrogênio , Extratos Vegetais/química , Compostos de Sulfidrila/análise
12.
Molecules ; 23(5)2018 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-29748497

RESUMO

The phenolic profiles of 12 cruciferous vegetables (pakchoi, choysum, Chinese cabbage, kailan, Brussels sprout, cabbage, cauliflower, broccoli, rocket salad, red cherry radish, daikon radish, and watercress) were studied with UHPLC-MS/MS. Antioxidant activity and total phenolic content (TPC) were also evaluated. A total of 74 phenolic compounds were identified, including 16 hydroxycinnamic acids and derivatives, and 58 flavonoids and derivatives. The main flavonoids identified were glycosylated quercetin, kaempferol and isorhamnetin, and the main hydroxycinnamic acids were ferulic, sinapic, caffeic and p-coumaric acids. Principal component analysis (PCA) revealed that the distribution of phenolic compounds in different genera of cruciferous vegetables was in accordance with their conventional taxonomy. The DPPH, ORAC and TPC values ranged from 1.11 to 9.54 µmoles Trolox equivalent/g FW, 5.34 to 32.92 µmoles Trolox equivalent/g FW, and 0.16 to 1.93 mg gallic acid equivalent/g FW respectively. Spearman's correlation showed significant (p < 0.05) positive correlations between TPC, flavonoids and antioxidant activity.


Assuntos
Antioxidantes/farmacologia , Fenóis/análise , Verduras/química , Compostos de Bifenilo/química , Sequestradores de Radicais Livres/química , Picratos/química , Análise de Componente Principal , Reprodutibilidade dos Testes , Estatísticas não Paramétricas
13.
Appl Microbiol Biotechnol ; 101(7): 3005-3014, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27957628

RESUMO

This study investigated the effects of temperature (20 and 30 °C) and pH (pH 3.1, 3.9) on kinetic changes of chemical constituents of the durian wine fermented with Saccharomyces cerevisiae. Temperature significantly affected growth of S. cerevisiae EC-1118 regardless of pH with a higher temperature leading to a faster cell death. The pH had a more significant effect on ethanol production than temperature with higher production at 20 °C (5.95%, v/v) and 30 °C (5.56%, v/v) at pH 3.9, relative to that at pH 3.1 (5.25 and 5.01%, v/v). However, relatively higher levels of isobutyl alcohol and isoamyl alcohol up to 64.52 ± 6.39 and 56.27 ± 3.00 mg/L, respectively, were produced at pH 3.1 than at pH 3.9 regardless of temperature. In contrast, production of esters was more affected by temperature than pH, where levels of ethyl esters (ethyl esters of octanoate, nonanoate, and decanoate) and acetate esters (ethyl acetate and isoamyl acetate) were significantly higher up to 2.13 ± 0.23 and 4.61 ± 0.22 mg/L, respectively, at 20 °C than at 30 °C. On the other hand, higher temperature improved the reduction of volatile sulfur compounds. This study illustrated that temperature control would be a more effective tool than pH in modulating the resulting aroma compound profile of durian wine.


Assuntos
Bombacaceae/metabolismo , Fermentação , Saccharomyces cerevisiae/metabolismo , Vinho/análise , Acetatos/metabolismo , Álcoois/metabolismo , Reatores Biológicos , Ésteres/metabolismo , Etanol/metabolismo , Concentração de Íons de Hidrogênio , Cinética , Saccharomyces cerevisiae/crescimento & desenvolvimento , Temperatura , Compostos Orgânicos Voláteis/metabolismo , Vinho/microbiologia
14.
Appl Microbiol Biotechnol ; 101(21): 7853-7863, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28942463

RESUMO

This is a first study on using two non-Saccharomyces yeasts, Torulaspora delbrueckii Biodiva and Pichia kluyveri FrootZen to produce durian wine via co-inoculation (Co-I) and sequential inoculation (Seq-I). T. delbrueckii inhibited the growth of P. kluyveri and P. kluyveri also partly retarded the growth of T. delbrueckii in Co-I and Seq-I treatments. Co-I and Seq-I produced similar levels of ethanol to T. delbrueckii Biodiva monoculture. In addition, Seq-I increased malic acid degradation and higher succinic acid production. Compared with T. delbrueckii Biodiva, Co-I produced similar amounts of ethyl esters, higher alcohols and moderately increased levels of ethyl acetate. Seq-I 2th (T. delbrueckii inoculated after 2 days fermentation with P. kluyveri) and Seq-I 5th produced excessive amounts of ethyl acetate (≥ 80 mg/L) but relatively lower levels of higher alcohols. This study suggested that Co-I could complete alcoholic fermentation with more complex aromas and might be novel way for wine making.


Assuntos
Bombacaceae/microbiologia , Etanol/metabolismo , Pichia/crescimento & desenvolvimento , Torulaspora/crescimento & desenvolvimento , Vinho/análise , Vinho/microbiologia , Acetatos/metabolismo , Malatos/metabolismo , Interações Microbianas , Pichia/metabolismo , Ácido Succínico/metabolismo , Torulaspora/metabolismo
15.
Molecules ; 22(6)2017 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-28538667

RESUMO

Aqueous extracts of young (7-day-old) Malay cherry (Lepisanthes alata) leaves were incorporated into wheat and rice flours to evaluate their inhibitory activities against α-amylase and α-glucosidase. HPLC-ESI/MS² results showed that the active components in young leaves were proanthocyanidins with lower mean degrees of polymerisation (≤10). The IC50 of the aqueous extracts of young leaves were 2.50 ± 0.03 and 12.91 ± 0.29 µg/mL, against α-amylase and α-glucosidase, which make them less active compared to the mature leaves. In contrast, total proanthocyanidins in aqueous extracts decreased as the leaves matured, indicating that the compounds in the mature leaves have much higher activity. However, there was no significant difference in the digestibility of wheat noodles incorporated with the aqueous extracts from either young or mature leaves. Interestingly, with regard to rice noodles, their digestibility was mostly reduced by incorporating aqueous extracts of young leaves compared to using mature leaves.


Assuntos
Hidrolases/metabolismo , Folhas de Planta/química , Sapindaceae/química , Inibidores de Glicosídeo Hidrolases/química , Inibidores de Glicosídeo Hidrolases/farmacologia , Hidrolases/antagonistas & inibidores , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Amido/metabolismo , alfa-Amilases/antagonistas & inibidores , alfa-Amilases/metabolismo , alfa-Glucosidases/metabolismo
16.
Anal Chem ; 88(8): 4426-31, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27030140

RESUMO

In this paper, we report a benzothiazole-functionalized cyanine fluorescence probe and demonstrate that it is selectively reactive to bisulfite, an intermediate indicator for oxidative stress. The selective reaction can be monitored by distinct ratiometric fluorescence variation favorable for cell imaging and visualization. The original probe can be regenerated in high yield through the elimination of bisulfite from the product by peroxides such as hydrogen peroxide, accompanied by fluorescence turning on at 590 nm, showing a potential application for the detection of peroxides. We successfully applied this probe for fluorescence imaging of bisulfite in cancer cells (MCF-7) treated with bisulfite and hydrogen peroxide as well as a selective detection limit of 0.34 µM bisulfite in aqueous solution.


Assuntos
Carbocianinas/química , Corantes Fluorescentes/química , Estresse Oxidativo , Sulfitos/análise , Carbocianinas/síntese química , Sobrevivência Celular , Corantes Fluorescentes/síntese química , Humanos , Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/química , Células MCF-7 , Estrutura Molecular , Sulfitos/química , Dióxido de Enxofre/análise
17.
Chem Senses ; 41(6): 487-95, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27001718

RESUMO

The perception of odor mixtures plays an important role in human food intake, behavior, and emotions. Decline of smell acuity with normal aging could impact food perception and preferences at various ages. However, since the landmark Smell Survey by National Geographic, little has been elucidated on differences in the onset and extent of loss in olfactory sensitivity toward single odorants. Here, using the Specific Sensitivity test, we show the onset and extent of loss in both identification and detection thresholds of odorants with age are odorant-specific. Subjects of Chinese descent in Singapore (186 women, 95 men), aged 21-80 years, were assessed for olfactory sensitivity of 10 odorants from various odor groups. Notably, subjects in their 70s required 179 times concentration of rose-like odorant (2-phenylethanol) than subjects in the 20s, while thresholds for onion-like 2-methyloxolane-3-thiol only differed by 3 times between the age groups. In addition, identification rate for 2-phenylethanol was negatively correlated with age throughout adult life whereas mushroom-like oct-1-en-3-ol was equally identified by subjects across all ages. Our results demonstrated the girth of differentiated olfactory loss due to normal ageing, which potentially affect overall perception and preferences of odor mixtures with age.


Assuntos
Envelhecimento/fisiologia , Odorantes , Limiar Sensorial/fisiologia , Olfato/fisiologia , Adulto , Idoso , Idoso de 80 Anos ou mais , China/etnologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Singapura
18.
Bioorg Med Chem ; 24(9): 1988-92, 2016 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-27020684

RESUMO

Flap structure-specific endonuclease 1 (FEN1) is one of the enzymes that involve in Eukaryotic DNA replication and repair. Recent studies have proved that FEN1 is highly over-expressed in various types of cancer cells and is a drug target. However, a limited number of FEN1 inhibitors has been identified and approved. Herein, we investigate the catalytic activity of FEN1, and propose a substrate-based inhibitor. As a consequence, one of the phosphorothioate-modified substrates is proved to exhibit the most efficient inhibitory effect in our in vitro examinations. A novelly-designed substrate-based FEN1 inhibitor was accordingly constructed and determined a remarkable IC50 value.


Assuntos
Endonucleases Flap/metabolismo , Endonucleases Flap/antagonistas & inibidores , Humanos , Especificidade por Substrato
19.
Appl Microbiol Biotechnol ; 100(20): 8877-88, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27405438

RESUMO

This work represents the first study on the biotransformation of chemical constituents of durian wine via simultaneous alcoholic fermentation (AF) and malolactic fermentation (MLF) with non-Saccharomyces yeast and lactic acid bacteria (LAB), namely, Torulaspora delbrueckii Biodiva and Oenococcus oeni PN4. The presence of PN4 improved the utilization of sugars but did not affect ethanol production. MLF resulted in the significant degradation of malic acid with corresponding increases in pH and lactic acid. The final concentrations of acetic acid (1.29 g/L) and succinic acid (3.70 g/L) in simultaneous AF and MLF were significantly higher than that in AF (1.05 and 1.31 g/L) only. Compared with AF, simultaneous AF and MLF significantly elevated the levels of aroma compounds with higher levels of higher alcohols (isoamyl alcohol, active amyl alcohol, isobutyl alcohol, and 2-phenylethyl alcohol), acetate esters (ethyl acetate, isoamyl acetate), and ethyl esters (ethyl octanoate, ethyl dodecanoate). All the endogenous volatile sulfur compounds decreased to trace or undetectable levels at the end of fermentation. MLF accentuated the reduction of acetaldehyde and sulfides. The initially absent dipropyl disulfide was formed, then catabolized, especially in simultaneous AF and MLF. This study suggested that the simultaneous AF and MLF of non-Saccharomyces and LAB could modify the volatile compositions and potentially modulate the organoleptic properties of durian wine.


Assuntos
Álcoois/metabolismo , Ácidos Carboxílicos/metabolismo , Oenococcus/metabolismo , Torulaspora/metabolismo , Vinho/microbiologia , Leveduras/metabolismo , Biotransformação , Bombacaceae/metabolismo , Fermentação , Concentração de Íons de Hidrogênio , Malato Desidrogenase/metabolismo , Sulfetos/metabolismo
20.
J Sci Food Agric ; 96(5): 1511-21, 2016 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-25966435

RESUMO

BACKGROUND: Chemical compositions of durian wines fermented with Metschnikowia pulcherrima Flavia, Torulaspora delbrueckii Biodiva, Pichia kluyveri FrootZen and Kluyveromyces thermotolerans Concerto were investigated. RESULTS: Sucrose was not utilized by M. pulcherrima and P. kluyveri, resulting in little formation of ethanol (0.3-0.5%, v/v), while about 7% ethanol was produced by the other two yeasts. Volatiles such as esters and sulfur-containing compounds were synthesized or catabolized and distinctive differences existed among yeasts. Larger amounts of higher alcohols and ethyl esters were detected in wines fermented by T. delbrueckii and K. thermotolerans, whereas M. pulcherrima and P. kluyveri produced more acetate esters such as ethyl acetate (1034.43 and 131.05 mg L(-1) respectively) and isoamyl acetate (0.56 and 27.68 mg L(-1) respectively). Most endogenous sulfur volatiles such as disulfides declined to trace levels, but new ones such as thioesters were formed. Sulfur volatiles in wines fermented by T. delbrueckii accounted for 0.20% relative peak area (RPA), followed by K. thermotolerans (0.23% RPA), P. kluyveri (1.43% RPA) and M. pulcherrima (4.16% RPA). CONCLUSION: The findings showed that a more complex flavor could result from fermentation with different non-Saccharomyces yeasts and the typical durian odor would still remain.


Assuntos
Bombacaceae , Fermentação , Frutas , Compostos Orgânicos Voláteis/análise , Vinho/análise , Dissulfetos/análise , Kluyveromyces/metabolismo , Metschnikowia/metabolismo , Pichia/metabolismo , Compostos de Enxofre/análise , Torulaspora/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA