Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 87
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Ecol ; 33(3): e17232, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38205900

RESUMO

The importance and prevalence of recent ice-age and post-glacial speciation and species diversification during the Pleistocene across many organismal groups and physiographic settings are well established. However, the extent to which Pleistocene diversification can be attributed to climatic oscillations and their effects on distribution ranges and population structure remains debatable. In this study, we use morphologic, geographic and genetic (RADseq) data to document Pleistocene speciation and intra-specific diversification of the unifoliolate-leaved clade of Florida Lupinus, a small group of species largely restricted to inland and coastal sand ridges across the Florida peninsula and panhandle. Phylogenetic and demographic analyses alongside morphological and geographic evidence suggest that recent speciation and intra-specific divergence within this clade were driven by a combination of non-adaptive allopatric divergence caused by edaphic niche conservatism and opportunities presented by the emergence of new post-glacial sand ridge habitats. These results highlight the central importance of even modest geographic isolation and short periods of allopatric divergence following range expansion in the emergence of new taxa and add to the growing evidence that Pleistocene climatic oscillations may contribute to rapid diversification in a myriad of physiographic settings. Furthermore, our results shed new light on long-standing taxonomic debate surrounding the number of species in the Florida unifoliate Lupinus clade providing support for recognition of five species and a set of intra-specific variants. The important conservation implications for the narrowly restricted, highly endangered species Lupinus aridorum, which we show to be genetically distinct from its sister species Lupinus westianus, are discussed.


Assuntos
Lupinus , Filogenia , Florida , Areia , Ecossistema
2.
New Phytol ; 235(6): 2365-2377, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35901264

RESUMO

Nitrogen-fixing symbiosis is globally important in ecosystem functioning and agriculture, yet the evolutionary history of nodulation remains the focus of considerable debate. Recent evidence suggesting a single origin of nodulation followed by massive parallel evolutionary losses raises questions about why a few lineages in the N2 -fixing clade retained nodulation and diversified as stable nodulators, while most did not. Within legumes, nodulation is restricted to the two most diverse subfamilies, Papilionoideae and Caesalpinioideae, which show stable retention of nodulation across their core clades. We characterize two nodule anatomy types across 128 species in 56 of the 152 genera of the legume subfamily Caesalpinioideae: fixation thread nodules (FTs), where nitrogen-fixing bacteroids are retained within the apoplast in modified infection threads, and symbiosomes, where rhizobia are symplastically internalized in the host cell cytoplasm within membrane-bound symbiosomes (SYMs). Using a robust phylogenomic tree based on 997 genes from 147 Caesalpinioideae genera, we show that losses of nodulation are more prevalent in lineages with FTs than those with SYMs. We propose that evolution of the symbiosome allows for a more intimate and enduring symbiosis through tighter compartmentalization of their rhizobial microsymbionts, resulting in greater evolutionary stability of nodulation across this species-rich pantropical legume clade.


Assuntos
Fabaceae , Rhizobium , Ecossistema , Fabaceae/genética , Nitrogênio , Fixação de Nitrogênio , Nodulação/genética , Nódulos Radiculares de Plantas , Simbiose
3.
Syst Biol ; 70(3): 508-526, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-32483631

RESUMO

The consequences of the Cretaceous-Paleogene (K-Pg) boundary (KPB) mass extinction for the evolution of plant diversity remain poorly understood, even though evolutionary turnover of plant lineages at the KPB is central to understanding assembly of the Cenozoic biota. The apparent concentration of whole genome duplication (WGD) events around the KPB may have played a role in survival and subsequent diversification of plant lineages. To gain new insights into the origins of Cenozoic biodiversity, we examine the origin and early evolution of the globally diverse legume family (Leguminosae or Fabaceae). Legumes are ecologically (co-)dominant across many vegetation types, and the fossil record suggests that they rose to such prominence after the KPB in parallel with several well-studied animal clades including Placentalia and Neoaves. Furthermore, multiple WGD events are hypothesized to have occurred early in legume evolution. Using a recently inferred phylogenomic framework, we investigate the placement of WGDs during early legume evolution using gene tree reconciliation methods, gene count data and phylogenetic supernetwork reconstruction. Using 20 fossil calibrations we estimate a revised timeline of legume evolution based on 36 nuclear genes selected as informative and evolving in an approximately clock-like fashion. To establish the timing of WGDs we also date duplication nodes in gene trees. Results suggest either a pan-legume WGD event on the stem lineage of the family, or an allopolyploid event involving (some of) the earliest lineages within the crown group, with additional nested WGDs subtending subfamilies Papilionoideae and Detarioideae. Gene tree reconciliation methods that do not account for allopolyploidy may be misleading in inferring an earlier WGD event at the time of divergence of the two parental lineages of the polyploid, suggesting that the allopolyploid scenario is more likely. We show that the crown age of the legumes dates to the Maastrichtian or early Paleocene and that, apart from the Detarioideae WGD, paleopolyploidy occurred close to the KPB. We conclude that the early evolution of the legumes followed a complex history, in which multiple auto- and/or allopolyploidy events coincided with rapid diversification and in association with the mass extinction event at the KPB, ultimately underpinning the evolutionary success of the Leguminosae in the Cenozoic. [Allopolyploidy; Cretaceous-Paleogene (K-Pg) boundary; Fabaceae, Leguminosae; paleopolyploidy; phylogenomics; whole genome duplication events].


Assuntos
Extinção Biológica , Fabaceae , Animais , Evolução Biológica , Evolução Molecular , Fabaceae/genética , Fósseis , Filogenia , Poliploidia
4.
New Phytol ; 225(3): 1355-1369, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31665814

RESUMO

Phylogenomics is increasingly used to infer deep-branching relationships while revealing the complexity of evolutionary processes such as incomplete lineage sorting, hybridization/introgression and polyploidization. We investigate the deep-branching relationships among subfamilies of the Leguminosae (or Fabaceae), the third largest angiosperm family. Despite their ecological and economic importance, a robust phylogenetic framework for legumes based on genome-scale sequence data is lacking. We generated alignments of 72 chloroplast genes and 7621 homologous nuclear-encoded proteins, for 157 and 76 taxa, respectively. We analysed these with maximum likelihood, Bayesian inference, and a multispecies coalescent summary method, and evaluated support for alternative topologies across gene trees. We resolve the deepest divergences in the legume phylogeny despite lack of phylogenetic signal across all chloroplast genes and the majority of nuclear genes. Strongly supported conflict in the remainder of nuclear genes is suggestive of incomplete lineage sorting. All six subfamilies originated nearly simultaneously, suggesting that the prevailing view of some subfamilies as 'basal' or 'early-diverging' with respect to others should be abandoned, which has important implications for understanding the evolution of legume diversity and traits. Our study highlights the limits of phylogenetic resolution in relation to rapid successive speciation.


Assuntos
Evolução Molecular , Fabaceae/classificação , Fabaceae/genética , Variação Genética , Genômica , Filogenia , Sequência de Bases , Teorema de Bayes , Genes de Cloroplastos , Funções Verossimilhança , Especificidade da Espécie
5.
Am J Bot ; 107(12): 1710-1735, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33253423

RESUMO

PREMISE: Targeted enrichment methods facilitate sequencing of hundreds of nuclear loci to enhance phylogenetic resolution and elucidate why some parts of the "tree of life" are difficult (if not impossible) to resolve. The mimosoid legumes are a prominent pantropical clade of ~3300 species of woody angiosperms for which previous phylogenies have shown extensive lack of resolution, especially among the species-rich and taxonomically challenging ingoids. METHODS: We generated transcriptomes to select low-copy nuclear genes, enrich these via hybrid capture for representative species of most mimosoid genera, and analyze the resulting data using de novo assembly and various phylogenomic tools for species tree inference. We also evaluate gene tree support and conflict for key internodes and use phylogenetic network analysis to investigate phylogenetic signal across the ingoids. RESULTS: Our selection of 964 nuclear genes greatly improves phylogenetic resolution across the mimosoid phylogeny and shows that the ingoid clade can be resolved into several well-supported clades. However, nearly all loci show lack of phylogenetic signal for some of the deeper internodes within the ingoids. CONCLUSIONS: Lack of resolution in the ingoid clade is most likely the result of hyperfast diversification, potentially causing a hard polytomy of six or seven lineages. The gene set for targeted sequencing presented here offers great potential to further enhance the phylogeny of mimosoids and the wider Caesalpinioideae with denser taxon sampling, to provide a framework for taxonomic reclassification, and to study the ingoid radiation.


Assuntos
Fabaceae , Radiação , Evolução Biológica , Núcleo Celular/genética , Fabaceae/genética , Filogenia
6.
New Phytol ; 224(1): 518-531, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-30883788

RESUMO

The evolution of secondary (insular) woodiness and the rapid disparification of plant growth forms associated with island radiations show intriguing parallels between oceanic islands and tropical alpine sky islands. However, the evolutionary significance of these phenomena remains poorly understood and the focus of debate. We explore the evolutionary dynamics of species diversification and trait disparification across evolutionary radiations in contrasting island systems compared with their nonisland relatives. We estimate rates of species diversification, growth form evolution and phenotypic space saturation for the classical oceanic island plant radiations - the Hawaiian silverswords and Macaronesian Echium - and the well-studied sky island radiations of Lupinus and Hypericum in the Andes. We show that secondary woodiness is associated with dispersal to islands and with accelerated rates of species diversification, accelerated disparification of plant growth forms and occupancy of greater phenotypic trait space for island clades than their nonisland relatives, on both oceanic and sky islands. We conclude that secondary woodiness is a prerequisite that could act as a key innovation, manifest as the potential to occupy greater trait space, for plant radiations on island systems in general, further emphasizing the importance of combinations of clade-specific traits and ecological opportunities in driving adaptive radiations.


Assuntos
Evolução Biológica , Ilhas , Madeira/fisiologia , Biodiversidade , Fenótipo , Desenvolvimento Vegetal , Plantas/anatomia & histologia , Especificidade da Espécie
7.
New Phytol ; 222(4): 1994-2008, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30536385

RESUMO

The extent to which phylogenetic biome conservatism vs biome shifting determines global patterns of biodiversity remains poorly understood. To address this question, we investigated the biogeography and trajectories of biome and growth form evolution across the Caesalpinia Group (Leguminosae), a clade of 225 species of trees, shrubs and lianas distributed across the Rainforest, Succulent, Temperate and Savanna Biomes. We focused especially on the little-known Succulent Biome, an assemblage of succulent-rich, grass-poor, seasonally dry tropical vegetation distributed disjunctly across the Neotropics, Africa, Arabia and Madagascar. We reconstructed a time-calibrated phylogeny, assembled species occurrence data and assigned species to areas, biomes and growth forms. These data are used to estimate the frequency of transcontinental disjunctions, biome shifts and evolutionary transitions between growth forms and test for phylogenetic biome conservatism and correlated evolution of growth forms and biome shifts. We uncovered a pattern of strong phylogenetic Succulent Biome conservatism. We showed that transcontinental disjunctions confined within the Succulent Biome are frequent and that biome shifts to the Savanna, Rainforest and Temperate Biomes are infrequent and closely associated with shifts in plant growth forms. Our results suggest that the Succulent Biome comprises an ecologically constrained evolutionary arena spanning large geographical disjunctions across the tropics.


Assuntos
Caesalpinia/classificação , Ecossistema , Filogenia , Clima Tropical , Teorema de Bayes , Biodiversidade , Geografia , Desenvolvimento Vegetal , Fatores de Tempo
8.
Nature ; 504(7479): 287-90, 2013 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-24213633

RESUMO

Bacteria swim by means of long flagella extending from the cell surface. These are assembled from thousands of protein subunits translocated across the cell membrane by an export machinery at the base of each flagellum. Unfolded subunits then transit through a narrow channel at the core of the growing flagellum to the tip, where they crystallize into the nascent structure. As the flagellum lengthens outside the cell, the rate of flagellum growth does not change. The mystery is how subunit transit is maintained at a constant rate without a discernible energy source in the channel of the external flagellum. We present evidence for a simple physical mechanism for flagellum growth that harnesses the entropic force of the unfolded subunits themselves. We show that a subunit docked at the export machinery can be captured by a free subunit through head-to-tail linkage of juxtaposed amino (N)- and carboxy (C)-terminal helices. We propose that sequential rounds of linkage would generate a multisubunit chain that pulls successive subunits into and through the channel to the flagellum tip, and by isolating filaments growing on bacterial cells we reveal the predicted chain of head-to-tail linked subunits in the transit channel of flagella. Thermodynamic analysis confirms that links in the subunit chain can withstand the pulling force generated by rounds of subunit crystallization at the flagellum tip, and polymer theory predicts that as the N terminus of each unfolded subunit crystallizes, the entropic force at the subunit C terminus would increase, rapidly overcoming the threshold required to pull the next subunit from the export machinery. This pulling force would adjust automatically over the increasing length of the growing flagellum, maintaining a constant rate of subunit delivery to the tip.


Assuntos
Flagelos/química , Flagelos/metabolismo , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Salmonella typhimurium/citologia , Cristalização , Entropia , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Dobramento de Proteína , Transporte Proteico
9.
New Phytol ; 219(2): 779-793, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29862512

RESUMO

Mountain ranges are amongst the most species-rich habitats, with many large and rapid evolutionary radiations. The tempo and mode of diversification in these systems are key unanswered questions in evolutionary biology. Here we study the Andean Lupinus radiation to understand the processes driving very rapid diversification in montane systems. We use genomic and transcriptomic data of multiple species and populations, and apply phylogenomic and demographic analyses to test whether diversification proceeded without interspecific gene flow - as expected if Andean orogeny and geographic isolation were the main drivers of diversification - or if diversification was accompanied by gene flow, in which case other processes were probably involved. We uncover several episodes of gene flow between species, including very recent events likely to have been prompted by changes in habitat connectivity during Pleistocene glacial cycles. Furthermore, we find that gene flow between species was heterogeneously distributed across the genome. We argue that exceptionally fast diversification of Andean Lupinus was partly a result of Late Pleistocene glacial cycles, with associated cycles of expansion and contraction driving geographic isolation or secondary contact of species. Furthermore, heterogeneous gene flow across the genome suggests a role for selection and ecological speciation in rapid diversification in this system.


Assuntos
Altitude , Ecossistema , Fluxo Gênico , Especiação Genética , Camada de Gelo , Variação Genética , Geografia , Hibridização Genética , Funções Verossimilhança , Filogenia , América do Sul , Fatores de Tempo
10.
Annu Rev Microbiol ; 67: 221-42, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23808339

RESUMO

In bacteria such as Pseudomonas aeruginosa and Escherichia coli, tripartite membrane machineries, or pumps, determine the efflux of small noxious molecules, such as detergents, heavy metals, and antibiotics, and the export of large proteins including toxins. They are therefore influential in bacterial survival, particularly during infections caused by multidrug-resistant pathogens. In these tripartite pumps an inner membrane transporter, typically an ATPase or proton antiporter, binds and translocates export or efflux substrates. In cooperation with a periplasmic adaptor protein it recruits and opens a TolC family cell exit duct, which is anchored in the outer membrane and projects across the periplasmic space between inner and outer membranes. Assembled tripartite pumps thus span the entire bacterial cell envelope. We review the atomic structures of each of the three pump components and discuss how these have allowed high-resolution views of tripartite pump assembly, operation, and possible inhibition.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Escherichia coli/metabolismo , Bombas de Íon/química , Bombas de Íon/metabolismo , Pseudomonas aeruginosa/metabolismo , Proteínas de Bactérias/genética , Membrana Celular/química , Membrana Celular/genética , Membrana Celular/metabolismo , Escherichia coli/química , Escherichia coli/genética , Bombas de Íon/genética , Modelos Moleculares , Periplasma/química , Periplasma/genética , Periplasma/metabolismo , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/genética
11.
Proc Natl Acad Sci U S A ; 112(23): E3058-66, 2015 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-26016525

RESUMO

Secreted pore-forming toxins of pathogenic Gram-negative bacteria such as Escherichia coli hemolysin (HlyA) insert into host-cell membranes to subvert signal transduction and induce apoptosis and cell lysis. Unusually, these toxins are synthesized in an inactive form that requires posttranslational activation in the bacterial cytosol. We have previously shown that the activation mechanism is an acylation event directed by a specialized acyl-transferase that uses acyl carrier protein (ACP) to covalently link fatty acids, via an amide bond, to specific internal lysine residues of the protoxin. We now reveal the 2.15-Å resolution X-ray structure of the 172-aa ApxC, a toxin-activating acyl-transferase (TAAT) from pathogenic Actinobacillus pleuropneumoniae. This determination shows that bacterial TAATs are a structurally homologous family that, despite indiscernible sequence similarity, form a distinct branch of the Gcn5-like N-acetyl transferase (GNAT) superfamily of enzymes that typically use acyl-CoA to modify diverse bacterial, archaeal, and eukaryotic substrates. A combination of structural analysis, small angle X-ray scattering, mutagenesis, and cross-linking defined the solution state of TAATs, with intermonomer interactions mediated by an N-terminal α-helix. Superposition of ApxC with substrate-bound GNATs, and assay of toxin activation and binding of acyl-ACP and protoxin peptide substrates by mutated ApxC variants, indicates the enzyme active site to be a deep surface groove.


Assuntos
Actinobacillus pleuropneumoniae/enzimologia , Aciltransferases/química , Aciltransferases/metabolismo , Sequência de Aminoácidos , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Processamento de Proteína Pós-Traducional , Homologia de Sequência de Aminoácidos
12.
Am J Bot ; 103(9): 1592-606, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27638916

RESUMO

PREMISE OF THE STUDY: The Andean highlands are a hotspot of domestication, yet our understanding of the origins of early Andean agriculture remains fragmentary. Key questions of where, when, how many times, and from what progenitors many Andean crops were domesticated remain unanswered. The Andean lupine crop tarwi (Lupinus mutabilis) is a regionally important pulse crop with exceptionally high seed protein and oil content and is the focus of modern breeding efforts, but its origins remain obscure. METHODS: A large genome-wide DNA polymorphism data set was generated using nextRADseq to infer relationships among more than 200 accessions of Andean Lupinus species, including 24 accessions of L. mutabilis and close relatives. Phylogenetic and demographic analyses were used to identify the likely progenitor of tarwi and elucidate the area and timing of domestication in combination with archaeological evidence. KEY RESULTS: We infer that tarwi was domesticated once in northern Peru, most likely in the Cajamarca region within, or adjacent to the extant distribution of L. piurensis, which is the most likely wild progenitor. Demographic analyses suggest that tarwi split from L. piurensis around 2600 BP and suffered a classical domestication bottleneck. The earliest unequivocal archaeological evidence of domesticated tarwi seeds is from the Mantaro Valley, central Peru ca. 1800 BP. CONCLUSIONS: A single origin of tarwi from L. piurensis in northern Peru provides a robust working hypothesis for the domestication of this regionally important crop and is one of the first clear-cut examples of a crop originating in the highlands of northern Peru.


Assuntos
Produtos Agrícolas/genética , DNA de Plantas/genética , Domesticação , Lupinus/genética , Peru , Filogenia , Análise de Sequência de DNA
13.
New Phytol ; 207(2): 275-282, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25605002

RESUMO

Alpine plant radiations are compared across the world's major mountain ranges and shown to be overwhelmingly young and fast, largely confined to the Pliocene and Pleistocene, and some of them apparently in the early explosive phase of radiation. Accelerated diversification triggered by island-like ecological opportunities following the final phases of mountain uplift, and in many cases enabled by the key adaptation of perennial habit, provides a general model for alpine plant radiations. Accelerated growth form evolution facilitated by perenniality provides compelling evidence of ecological release and suggests striking parallels between island-like alpine, and especially tropicalpine radiations, and island radiations more generally. These parallels suggest that the world's mountains offer an excellent comparative system for explaining evolutionary radiation.


Assuntos
Adaptação Fisiológica , Biodiversidade , Evolução Biológica , Fenômenos Geológicos , Fenótipo , Filogenia , Plantas/genética , Ecossistema , Especiação Genética , Ilhas , Lupinus/genética , Filogeografia , Desenvolvimento Vegetal
15.
Proc Biol Sci ; 281(1784): 20140075, 2014 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-24759859

RESUMO

The exceptional species diversity of flowering plants, exceeding that of their sister group more than 250-fold, is especially evident in floral innovations, interactions with pollinators and sexual systems. Multiple theories, emphasizing flower-pollinator interactions, genetic effects of mating systems or high evolvability, predict that floral evolution profoundly affects angiosperm diversification. However, consequences for speciation and extinction dynamics remain poorly understood. Here, we investigate trajectories of species diversification focusing on heterostyly, a remarkable floral syndrome where outcrossing is enforced via cross-compatible floral morphs differing in placement of their respective sexual organs. Heterostyly evolved at least 20 times independently in angiosperms. Using Darwin's model for heterostyly, the primrose family, we show that heterostyly accelerates species diversification via decreasing extinction rates rather than increasing speciation rates, probably owing to avoidance of the negative genetic effects of selfing. However, impact of heterostyly appears to differ over short and long evolutionary time-scales: the accelerating effect of heterostyly on lineage diversification is manifest only over long evolutionary time-scales, whereas recent losses of heterostyly may prompt ephemeral bursts of speciation. Our results suggest that temporal or clade-specific conditions may ultimately determine the net effects of specific traits on patterns of species diversification.


Assuntos
Biodiversidade , Evolução Biológica , Primulaceae/fisiologia , Proteínas de Cloroplastos/genética , Extinção Biológica , Flores/genética , Flores/fisiologia , Dados de Sequência Molecular , Filogenia , Reação em Cadeia da Polimerase , Primulaceae/genética , Reprodução , Análise de Sequência de DNA
16.
Proc Natl Acad Sci U S A ; 108(5): 2112-7, 2011 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-21245342

RESUMO

In bacterial drug resistance and virulence pumps, an inner membrane (IM) transporter and periplasmic adaptor recruit an outer membrane (OM) trimeric TolC exit duct that projects an α-helical tunnel across the periplasm. The TolC periplasmic entrance is closed by densely packed α-helical coiled coils, inner H7/H8, and outer H3/H4, constrained by a hydrogen bond network. On recruitment, these coiled coils must undergo transition to the open state. We present 2.9 Å resolution crystal structures of two sequential TolC open states in which the network is incrementally disrupted and channel conductances defined in lipid bilayers. Superimposition of TolC(RS) (370 pS) and TolC(YFRS) (1,000 pS) on the TolC(WT) closed state (80 pS) showed that in the initial open-state TolC(RS), relaxation already causes approximately 14° twisting and expansion of helix H7 at the periplasmic tip, increasing interprotomer distances from 12.2 Å in TolC(WT) to 18.9 Å. However, in the crystal structure, the weakened Asp(374) pore constriction was maintained at the closed state 11.3 Å(2). In the advanced open-state TolC(YFRS), there was little further expansion at the tip, to interprotomer 21.3 Å, but substantial movement of inner and outer coiled coils dilated the pore constriction. In particular, upon abolition of the TolC(YFRS) intraprotomer Tyr(362)-Asp(153) link, a redirection of Tyr(362) and "bulge" in H3 allowed a simple movement outward of H8, establishing a 50.3 Å(2) opening. Root mean square deviations (rmsds) over the coiled coils of the three protomers of TolC(RS) and TolC(YFRS) illustrate that, whereas independent movement at the periplasmic tips may feature in the initial stages of opening, full dilation of the pore constriction is entirely symmetrical.


Assuntos
Proteínas da Membrana Bacteriana Externa/fisiologia , Proteínas de Escherichia coli/fisiologia , Proteínas de Membrana Transportadoras/fisiologia , Proteínas da Membrana Bacteriana Externa/química , Transporte Biológico , Escherichia coli/fisiologia , Proteínas de Escherichia coli/química , Bicamadas Lipídicas , Proteínas de Membrana Transportadoras/química
17.
PhytoKeys ; 240: 1-552, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38912426

RESUMO

Caesalpinioideae is the second largest subfamily of legumes (Leguminosae) with ca. 4680 species and 163 genera. It is an ecologically and economically important group formed of mostly woody perennials that range from large canopy emergent trees to functionally herbaceous geoxyles, lianas and shrubs, and which has a global distribution, occurring on every continent except Antarctica. Following the recent re-circumscription of 15 Caesalpinioideae genera as presented in Advances in Legume Systematics 14, Part 1, and using as a basis a phylogenomic analysis of 997 nuclear gene sequences for 420 species and all but five of the genera currently recognised in the subfamily, we present a new higher-level classification for the subfamily. The new classification of Caesalpinioideae comprises eleven tribes, all of which are either new, reinstated or re-circumscribed at this rank: Caesalpinieae Rchb. (27 genera / ca. 223 species), Campsiandreae LPWG (2 / 5-22), Cassieae Bronn (7 / 695), Ceratonieae Rchb. (4 / 6), Dimorphandreae Benth. (4 / 35), Erythrophleeae LPWG (2 /13), Gleditsieae Nakai (3 / 20), Mimoseae Bronn (100 / ca. 3510), Pterogyneae LPWG (1 / 1), Schizolobieae Nakai (8 / 42-43), Sclerolobieae Benth. & Hook. f. (5 / ca. 113). Although many of these lineages have been recognised and named in the past, either as tribes or informal generic groups, their circumscriptions have varied widely and changed over the past decades, such that all the tribes described here differ in generic membership from those previously recognised. Importantly, the approximately 3500 species and 100 genera of the former subfamily Mimosoideae are now placed in the reinstated, but newly circumscribed, tribe Mimoseae. Because of the large size and ecological importance of the tribe, we also provide a clade-based classification system for Mimoseae that includes 17 named lower-level clades. Fourteen of the 100 Mimoseae genera remain unplaced in these lower-level clades: eight are resolved in two grades and six are phylogenetically isolated monogeneric lineages. In addition to the new classification, we provide a key to genera, morphological descriptions and notes for all 163 genera, all tribes, and all named clades. The diversity of growth forms, foliage, flowers and fruits are illustrated for all genera, and for each genus we also provide a distribution map, based on quality-controlled herbarium specimen localities. A glossary for specialised terms used in legume morphology is provided. This new phylogenetically based classification of Caesalpinioideae provides a solid system for communication and a framework for downstream analyses of biogeography, trait evolution and diversification, as well as for taxonomic revision of still understudied genera.

18.
Syst Biol ; 61(3): 443-60, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22228799

RESUMO

Replicate radiations provide powerful comparative systems to address questions about the interplay between opportunity and innovation in driving episodes of diversification and the factors limiting their subsequent progression. However, such systems have been rarely documented at intercontinental scales. Here, we evaluate the hypothesis of multiple radiations in the genus Lupinus (Leguminosae), which exhibits some of the highest known rates of net diversification in plants. Given that incomplete taxon sampling, background extinction, and lineage-specific variation in diversification rates can confound macroevolutionary inferences regarding the timing and mechanisms of cladogenesis, we used Bayesian relaxed clock phylogenetic analyses as well as MEDUSA and BiSSE birth-death likelihood models of diversification, to evaluate the evolutionary patterns of lineage accumulation in Lupinus. We identified 3 significant shifts to increased rates of net diversification (r) relative to background levels in the genus (r = 0.18-0.48 lineages/myr). The primary shift occurred approximately 4.6 Ma (r = 0.48-1.76) in the montane regions of western North America, followed by a secondary shift approximately 2.7 Ma (r = 0.89-3.33) associated with range expansion and diversification of allopatrically distributed sister clades in the Mexican highlands and Andes. We also recovered evidence for a third independent shift approximately 6.5 Ma at the base of a lower elevation eastern South American grassland and campo rupestre clade (r = 0.36-1.33). Bayesian ancestral state reconstructions and BiSSE likelihood analyses of correlated diversification indicated that increased rates of speciation are strongly associated with the derived evolution of perennial life history and invasion of montane ecosystems. Although we currently lack hard evidence for "replicate adaptive radiations" in the sense of convergent morphological and ecological trajectories among species in different clades, these results are consistent with the hypothesis that iteroparity functioned as an adaptive key innovation, providing a mechanism for range expansion and rapid divergence in upper elevation regions across much of the New World.


Assuntos
Lupinus/classificação , Filogenia , Filogeografia/métodos , Biodiversidade , DNA de Plantas/genética , Funções Verossimilhança , Lupinus/genética
19.
Proc Natl Acad Sci U S A ; 107(31): 13783-7, 2010 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-20643954

RESUMO

The Andes are the most species-rich global biodiversity hotspot. Most research and conservation attention in the Andes has focused on biomes such as rain forest, cloud forest, and páramo, where much plant species diversity is the hypothesized result of rapid speciation associated with the recent Andean orogeny. In contrast to these mesic biomes, we present evidence for a different, older diversification history in seasonally dry tropical forests (SDTF) occupying rain-shadowed inter-Andean valleys. High DNA sequence divergence in Cyathostegia mathewsii, a shrub endemic to inter-Andean SDTF, indicates isolation for at least 5 million years of populations separated by only ca. 600 km of high cordillera in Peru. In conjunction with fossil evidence indicating the presence of SDTF in the Andes in the late Miocene, our data suggest that the disjunct small valley pockets of inter-Andean SDTF have persisted over millions of years. These forests are rich in endemic species but massively impacted, and merit better representation in future plans for science and conservation in Andean countries.


Assuntos
Biodiversidade , Fabaceae/genética , Filogenia , Altitude , Equador , Dados de Sequência Molecular , Peru , Estações do Ano
20.
Sci Adv ; 9(7): eade4954, 2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36800419

RESUMO

Early natural historians-Comte de Buffon, von Humboldt, and De Candolle-established environment and geography as two principal axes determining the distribution of groups of organisms, laying the foundations for biogeography over the subsequent 200 years, yet the relative importance of these two axes remains unresolved. Leveraging phylogenomic and global species distribution data for Mimosoid legumes, a pantropical plant clade of c. 3500 species, we show that the water availability gradient from deserts to rain forests dictates turnover of lineages within continents across the tropics. We demonstrate that 95% of speciation occurs within a precipitation niche, showing profound phylogenetic niche conservatism, and that lineage turnover boundaries coincide with isohyets of precipitation. We reveal similar patterns on different continents, implying that evolution and dispersal follow universal processes.


Assuntos
Biodiversidade , Ecossistema , Filogenia , Geografia , Floresta Úmida , Clima Tropical
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA