Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Cell Biol ; 18(1): 17, 2017 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-28415963

RESUMO

BACKGROUND: The murine double minute 2 (MDM2) is an oncogene and a negative regulator of the tumor suppressor protein p53. MDM2 is known to be amplified in numerous human cancers, and upregulation of MDM2 is considered to be an alternative mechanism of p53 inactivation. The presence of many splice variants of MDM2 has been observed in both normal tissues and malignant cells; however their impact and functional properties in response to chemotherapy treatment are not fully understood. Here, we investigate the biological effects of three widely expressed alternatively spliced variants of MDM2; MDM2-A, MDM2-B and MDM2-C, both in unstressed MCF-7 breast cancer cells and in cells subjected to chemotherapy. We assessed protein stability, subcellular localization and induction of downstream genes known to be regulated by the MDM2-network, as well as impact on cellular endpoints, such as apoptosis, cell cycle arrest and senescence. RESULTS: We found both the splice variants MDM2-B and -C, to have a much longer half-life than MDM2 full-length (FL) protein after chemotherapy treatment indicating that, under stressed conditions, the regulation of degradation of these two variants differs from that of MDM2-FL. Interestingly, we observed all three splice variants to deviate from MDM2-FL protein with respect to subcellular distribution. Furthermore, while MDM2-A and -B induced the expression of the pro-apoptotic gene PUMA, this effect did not manifest in an increased level of apoptosis. CONCLUSION: Although MDM2-B induced slight changes in the cell cycle profile, overall, we found the impact of the three MDM2 splice variants on potential cellular endpoints upon doxorubicin treatment to be limited.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Splicing de RNA , Antibióticos Antineoplásicos/toxicidade , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Senescência Celular/efeitos dos fármacos , Doxorrubicina/toxicidade , Feminino , Genes Reporter , Células HCT116 , Meia-Vida , Humanos , Células MCF-7 , Microscopia de Fluorescência , Estabilidade Proteica , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/genética
2.
Biochim Biophys Acta ; 1830(3): 2790-7, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23246812

RESUMO

BACKGROUND: Approximately 4300 different TP53 mutations have been reported in human cancers. TP53 mutations, in particular those affecting the L2/L3 domains, are associated with resistance to anthracycline or mitomycin treatment in breast cancer patients. While many mutations have been characterised functionally, novel TP53 mutations are continuously reported. Here, we characterise 10 p53 protein variants encoded by mutated TP53 (5 within and 5 outside L2/L3) detected in locally advanced or metastatic breast cancers. Each tumour was previously characterised for response to therapy, allowing comparison between in vivo and in vitro findings. METHODS: Mutated p53 variants were analysed for their ability to oligomerise with the wild-type protein and their subcellular localisation by immunoprecipitation and immunofluorescence, respectively. Their ability to induce transcription of target genes was determined by qPCR. Cellular growth rate, apoptosis and senescence were monitored by WST-1, TUNEL and beta-galactosidase assays, respectively. RESULTS: Immunoprecipitation assays revealed each mutant protein to retain binding capacity for wild-type p53, thus potentially acting in a dominant negative manner. Even though each p53 variant located predominantly in the nucleus, the percentage of cells with only nuclear p53 localisation varied between 60% and 90%. None of the p53 variants were able to induce target genes to levels similar to wild-type p53, nor where they able to reduce cellular growth rate, induce apoptosis or senescence similar to wild-type p53 after anthracycline treatment in vitro. CONCLUSIONS: All the 10 variants studied displayed inferior p53 functionality compared to the wild-type protein. GENERAL SIGNIFICANCE: Our data add further information characterising the effects of somatic TP53 mutations on p53 protein function and anthracycline resistance in breast cancer.


Assuntos
Antraciclinas/farmacologia , Antibióticos Antineoplásicos/farmacologia , Neoplasias da Mama/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Mitomicina/farmacologia , Mutação , Proteína Supressora de Tumor p53/genética , Apoptose/efeitos dos fármacos , Biópsia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/genética , Feminino , Humanos , Plasmídeos , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Relação Estrutura-Atividade , Transcrição Gênica/efeitos dos fármacos , Transfecção , Proteína Supressora de Tumor p53/metabolismo
3.
Cell Death Discov ; 3: 17026, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28580174

RESUMO

Loss of TP53 and RB1 function have both been linked to poor response to DNA damaging drugs in breast cancer patients. We inactivated TP53 and/or RB1 by siRNA mediated knockdown in breast cancer cell lines varying with respect to ER/PgR and Her-2 status as well as TP53 and RB1 mutation status (MCF-7, T47D, HTB-122 and CRL2324) and determined effects on cell cycle arrest, apoptosis and senescence with or without concomitant treatment with doxorubicin. In T47D cells, we found the cell cycle phase distribution to be altered when inactivating TP53 (P=0.0003) or TP53 and RB1 concomitantly (P≤0.001). No similar changes were observed in MCF-7, HTB-122 or CRL2324 cells. While no significant change was observed for the CRL2324 cells upon doxorubicin treatment, MCF-7, T47D as well as HTB-122 cells responded to knockdown of TP53 and RB1 in concert, with a decrease in the fraction of cells in G1/G0-phase (P=0.042, 0.021 and 0.027, respectively). Inactivation of TP53 and/or RB1 caused no change in induction of apoptosis. Upon doxorubicin treatment, inactivation of TP53 or RB1 separately caused no induction of apoptosis in MCF-7 and HTB-122 cells; however, concomitant inactivation leads to a slightly reduced activation of apoptosis. Interestingly, upon doxorubicin treatment, concomitant inactivation of TP53 and RB1 caused a decrease in senescence in MCF-7 cells (P=0.027). Comparing the effects of concomitant knockdown on apoptosis and senescence, we observed a strong interaction (P=0.001). We found concomitant inactivation of TP53 and RB1 to affect various routes of response to doxorubicin treatment in breast cancer cells.

4.
Transl Oncol ; 10(5): 806-817, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28844019

RESUMO

BACKGROUND: MDM2 is a negative regulator of p53 and is upregulated in numerous human cancers. While different MDM2 splice variants have been observed in both normal tissues and malignant cells, their functions are poorly understood. METHODS: We evaluated the effect of MDM2 splice variants by overexpression in MCF-7 cells and analyses of expression of downstream genes (qPCR and Western blot), subcellular localization (immunofluorescence), cell cycle assays (Nucleocounter3000), apoptosis analysis (Annexin V detection), and induction of senescence (ß-galactosidase analysis). RESULTS: In a screen for MDM2 splice variants in MCF-7 breast cancer cells, extended with data from healthy leukocytes, we found P2-MDM2-10 and MDM2-Δ5 to be the splice variants expressed at highest levels. Contrasting MDM2 full-length protein, we found normal tissue expression levels of P2-MDM2-10 and MDM2-Δ5 to be highest in individuals harboring the promoter SNP309TT genotype. While we detected no protein product coded for by MDM2-Δ5, the P2-MDM2-10 variant generated a protein markedly more stable than MDM2-FL. Both splice variants were significantly upregulated in stressed cells (P=4.3 × 10-4 and P=7.1 × 10-4, respectively). Notably, chemotherapy treatment and overexpression of P2-MDM2-10 or MDM2-Δ5 both lead to increased mRNA levels of the endogenous MDM2-FL (P=.039 and P=.070, respectively) but also the proapoptotic gene PUMA (P=.010 and P=.033, respectively), accompanied by induction of apoptosis and repression of senescence. CONCLUSION: We found P2-MDM2-10 and MDM2-Δ5 to have distinct biological functions in breast cancer cells. GENERAL SIGNIFICANCE: Alternative splicing may influence the oncogenic effects of the MDM2 gene.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA