Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroeng Rehabil ; 19(1): 3, 2022 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-35034661

RESUMO

BACKGROUND: Error amplification (EA), virtually magnify task errors in visual feedback, is a potential neurocognitive approach to facilitate motor performance. With regional activities and inter-regional connectivity of electroencephalography (EEG), this study investigated underlying cortical mechanisms associated with improvement of postural balance using EA. METHODS: Eighteen healthy young participants maintained postural stability on a stabilometer, guided by two visual feedbacks (error amplification (EA) vs. real error (RE)), while stabilometer plate movement and scalp EEG were recorded. Plate dynamics, including root mean square (RMS), sample entropy (SampEn), and mean frequency (MF) were used to characterize behavioral strategies. Regional cortical activity and inter-regional connectivity of EEG sub-bands were characterized to infer neural control with relative power and phase-lag index (PLI), respectively. RESULTS: In contrast to RE, EA magnified the errors in the visual feedback to twice its size during stabilometer stance. The results showed that EA led to smaller RMS of postural fluctuations with greater SampEn and MF than RE did. Compared with RE, EA altered cortical organizations with greater regional powers in the mid-frontal cluster (theta, 4-7 Hz), occipital cluster (alpha, 8-12 Hz), and left temporal cluster (beta, 13-35 Hz). In terms of the phase-lag index of EEG between electrode pairs, EA significantly reduced long-range prefrontal-parietal and prefrontal-occipital connectivity of the alpha/beta bands, and the right tempo-parietal connectivity of the theta/alpha bands. Alternatively, EA augmented the fronto-centro-parietal connectivity of the theta/alpha bands, along with the right temporo-frontal and temporo-parietal connectivity of the beta band. CONCLUSION: EA alters postural strategies to improve stance stability on a stabilometer with visual feedback, attributable to enhanced error processing and attentional release for target localization. This study provides supporting neural correlates for the use of virtual reality with EA during balance training.


Assuntos
Eletroencefalografia , Equilíbrio Postural , Atenção , Retroalimentação , Retroalimentação Sensorial , Humanos
2.
Int J Mol Sci ; 23(18)2022 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-36142225

RESUMO

Various infarct sizes induced by middle cerebral artery occlusion (MCAO) generate inconsistent outcomes for stroke preclinical study. Monitoring cerebral hemodynamics may help to verify the outcome of MCAO. The aim of this study was to investigate the changes in brain tissue optical properties by frequency-domain near-infrared spectroscopy (FD-NIRS), and establish the relationship between cerebral hemodynamics and infarct variation in MCAO model. The rats were undergone transient MCAO using intraluminal filament. The optical properties and hemodynamics were measured by placing the FD-NIRS probes on the scalp of the head before, during, and at various time-courses after MCAO. Bimodal infarction severities were observed after the same 90-min MCAO condition. Significant decreases in concentrations of oxygenated hemoglobin ([HbO]) and total hemoglobin ([HbT]), tissue oxygenation saturation (StO2), absorption coefficient (µa) at 830 nm, and reduced scattering coefficient (µs') at both 690 and 830 nm were detected during the occlusion in the severe infarction but not the mild one. Of note, the significant increases in [HbO], [HbT], StO2, and µa at both 690 and 830 nm were found on day 3; and increases in µs' at both 690 and 830 nm were found on day 2 and day 3 after MCAO, respectively. The interhemispheric correlation coefficient (IHCC) was computed from low-frequency hemodynamic oscillation of both hemispheres. Lower IHCCs standing for interhemispheric desynchronizations were found in both mild and severe infarction during occlusion, and only in severe infarction after reperfusion. Our finding supports that sequential FD-NIRS parameters may associated with the severity of the infarction in MCAO model, and the consequent pathologies such as vascular dysfunction and brain edema. Further study is required to validate the potential use of FD-NIRS as a monitor for MCAO verification.


Assuntos
Infarto da Artéria Cerebral Média , Acidente Vascular Cerebral , Animais , Modelos Animais de Doenças , Hemodinâmica , Infarto da Artéria Cerebral Média/patologia , Oxiemoglobinas , Ratos , Acidente Vascular Cerebral/patologia
3.
Eur J Appl Physiol ; 120(6): 1305-1317, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32297005

RESUMO

PURPOSE: This study investigated fatigue-related modulation of common neural inputs to motor units (MUs) under 5 Hz, which determines force precision control. METHODS: Twenty-seven adults performed a sequence of fatiguing contractions. The participants were assessed with a static isometric index abduction at 20% maximal voluntary contraction in the pre-test and post-test. Discharge characteristics of MUs of the first dorsal interosseous muscle were analyzed with decomposed EMG signals. RESULTS: Along with increases in the mean (58.40 ± 11.76 ms → 62.55 ± 10.83 ms, P = 0.029) and coefficient of variation (0.204 ± .014 → 0.215 ± 0.017, P = 0.002) in inter-spike intervals, the fatiguing contraction caused reductions in the mean frequency (16.84 ± 3.31 Hz → 15.59 ± 3.21 Hz, P = 0.027) and spectral dispersions (67.54 ± 4.49 → 62.64 ± 6.76 Hz, P = 0.007) of common neural drive, as estimated with smoothed cumulative motor unit spike trains (SCMUSTs). Stabilogram diffusion analysis of SCMUSTs revealed significant fatigue-related reductions in the long-term effective diffusion coefficient (1.91 ± 0.77 Hz2/s → 1.61 ± 0.61 Hz2/s, P = 0.020) and long-term scaling exponent (0.480 ± 0.013 Hz2/s → 0.471 ± 0.017 Hz2/s, P = 0.014). After fatiguing contraction, mutual information of force fluctuations and SCMUSTs was augmented roughly by 12.95% (P = 0.041). CONCLUSIONS: Muscular fatigue could compress and shift the low-frequency common drive to MUs toward lower spectral bands, thereby enhancing transmission of twitch forces through the muscle-tendon complex with a low-pass filter property. The fatigue-induced changes involve increased closed-loop control of the common modulation of MU discharge rates.


Assuntos
Contração Isométrica/fisiologia , Neurônios Motores/fisiologia , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Adulto , Eletromiografia , Feminino , Humanos , Masculino , Movimento/fisiologia , Adulto Jovem
4.
Eur J Appl Physiol ; 120(6): 1437-1447, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32318813

RESUMO

PURPOSE: Blood flow restriction (BFR) is an innovation in fitness to train muscles with low loads at low oxygen levels. Low-level laser therapy (LLLT) is a bio-energetic approach to alleviate muscle fatigue during resistance training. This study investigated the immediate effect of LLLT pre-conditioning on BFR that accelerates muscle fatigue due to ischemia. METHODS: Fifteen young adults participated in this study of a crossover randomized design. They completed a low-load contraction with various pre-conditioning (blood flow restriction with low-level laser therapy (LLLT + BFR), blood flow restriction with sham low-level laser therapy (BFR), and control). Force fluctuation dynamics, muscle oxygen saturation of hemoglobin and myoglobin (SmO2), and discharge patterns of motor units (MU) were compared. RESULTS: Normalized SmO2 during low-load contractions significantly varied with the pre-contraction protocols (Control (83.6 ± 3.0%) > LLLT + BFR (70.3 ± 2.8%) > BFR (55.4 ± 2.4%). Also, force fluctuations and MU discharge varied with the pre-contraction protocols. Multi-scale entropy and mean frequency of force fluctuations were greater in the LLLT + BFR condition (31.95 ± 0.67) than in the BFR condition (29.47 ± 0.73). The mean inter-spike interval of MUs was greater in the LLLT + BFR condition (53.32 ± 2.70 ms) than in the BFR condition (45.04 ± 1.08 ms). In particular, MUs with higher recruitment thresholds exhibited greater LLLT-related discharge complexity (LLLT + BFR (0.201 ± 0.012) > BFR (0.154 ± 0.006)). CONCLUSIONS: LLLT pre-conditioning can minimize the BFR-related decline in muscle oxygen saturation, leading to force gradation and MU discharge in a cost-effective and complex manner.


Assuntos
Contração Isométrica/fisiologia , Terapia com Luz de Baixa Intensidade , Fadiga Muscular/fisiologia , Músculo Esquelético/fisiologia , Treinamento Resistido , Adulto , Eletromiografia , Feminino , Hemodinâmica/fisiologia , Humanos , Masculino , Músculo Esquelético/irrigação sanguínea , Fluxo Sanguíneo Regional/fisiologia , Adulto Jovem
5.
J Aging Phys Act ; 28(6): 934-942, 2020 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-32702665

RESUMO

This study investigated how visual feedback of virtual error reduction (ER) modified the visuomotor performance of older adults with limited attentional capacity. Error structures of young and older adults during birhythmic force tracking were contrasted when the visualized error size was exact or half of the actual size. As compared with full-size error feedback, ER feedback improved the force tracking symmetry of older adults, but undermined that of young adults. Extended Poincaré analysis revealed that young adults presented greater short-term error variability (mean value of κ-lagged SD1 of the error signal) with ER feedback, which led to a smaller mean value of κ-lagged SD1 of the error signal for older adults. The ER-related task improvement of the older adults was negatively correlated with the size of the tracking errors with real error feedback and positively correlated with ER-related increases in force spectral symmetry and decreases in the mean value of κ-lagged SD1 of the error signal. ER feedback could advance visuomotor tasks for older adults who perform worse with full-size visual feedback by the enhancement of self-efficacy and stabilization of negative internal feedback.

6.
J Aging Phys Act ; 28(1): 114-121, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31629359

RESUMO

This study contrasted the stochastic force component between young and older adults, who performed pursuit tracking/compensatory tracking by exerting in-phase/antiphase forces to match a sinusoidal target. Tracking force was decomposed into the force component containing the target frequency and the nontarget force fluctuations (stochastic component). Older adults with inferior task performance had higher complexity (entropy across time; p = .005) in total force. For older adults, task errors were negatively correlated with force fluctuation complexity (pursuit tracking: r = -.527 to -.551; compensatory tracking: r = -.626 to -.750). Notwithstanding an age-related increase in total force complexity (p = .004), older adults exhibited lower complexity of the stochastic force component than young adults did (low frequency: p = .017; high frequency: p = .035). Those older adults with a higher complexity of stochastic force had better task performance due to the underlying use of a richer gradation strategy to compensate for impaired oscillatory control.


Assuntos
Envelhecimento , Contração Muscular , Músculo Esquelético , Idoso , Entropia , Feminino , Humanos , Contração Isométrica , Masculino , Processos Estocásticos , Adulto Jovem
7.
Chin J Physiol ; 62(4): 166-174, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31535632

RESUMO

Although force steadiness varies with visuospatial information, accountable motor unit (MU) behaviors are not fully understood. This study investigated the modulation of MU discharges and force-discharge relation due to variations in the spatial resolution of visual feedback, with a particular focus on discharge variability among MUs. Fourteen young adults produced isometric force at 10% of maximal voluntary contraction (MVC) through index abduction, under the conditions of force trajectory displayed with low visual gain (LVG) and high visual gain (HVG). Together with smaller and more complex force fluctuations, HVG resulted in greater variabilities of the mean interspike interval and discharge irregularity among MUs than LVG did. Estimated via smoothening of a cumulative spike train of all MUs, global discharge rate was tuned to visual gain, with a more complex global discharge rate and a lower force-discharge relation in the HVG condition. These higher discharge variabilities were linked to larger variance of the common drive received by MUs for regulation of muscle force with higher visuospatial information. In summary, higher visuospatial information improves force steadiness with more complex force fluctuations, underlying joint effects of low-pass filter property of the musculotendon complex and central modulation of discharge variability among MUs.


Assuntos
Neurônios Motores , Potenciais de Ação , Eletromiografia , Humanos , Contração Muscular , Músculo Esquelético , Alta do Paciente
8.
Arch Phys Med Rehabil ; 99(8): 1540-1546.e2, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29608901

RESUMO

OBJECTIVE: To examine the task prioritization effects on postural-suprapostural dual-task performance in patients with early-stage Parkinson disease (PD) without clinically observed postural symptoms. DESIGN: Cross-sectional study. Participants performed a force-matching task while standing on a mobile platform, and were instructed to focus their attention on either the postural task (posture-first strategy) or the force-matching task (posture-second strategy). SETTING: University research laboratory. PARTICIPANTS: Individuals (N=16) with early-stage PD who had no clinically observed postural symptoms. INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Dual-task change (DTC; percent change between single-task and dual-task performance) of posture error, posture approximate entropy (ApEn), force error, and reaction time (RT). Positive DTC values indicate higher postural error, posture ApEn, force error, and force RT during dual-task conditions compared with single-task conditions. RESULTS: Compared with the posture-first strategy, the posture-second strategy was associated with smaller DTC of posture error and force error, and greater DTC of posture ApEn. In contrast, greater DTC of force RT was observed under the posture-second strategy. CONCLUSIONS: Contrary to typical recommendations, our results suggest that the posture-second strategy may be an effective dual-task strategy in patients with early-stage PD who have no clinically observed postural symptoms in order to reduce the negative effect of dual tasking on performance and facilitate postural automaticity.


Assuntos
Doença de Parkinson/fisiopatologia , Equilíbrio Postural/fisiologia , Análise e Desempenho de Tarefas , Idoso , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Tempo de Reação
9.
Eur J Neurosci ; 39(12): 2083-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24674356

RESUMO

A fundamental approach for resolving motor deficits in patients suffering from various neurological diseases is to improve the impaired cortical function through the modulation of plasticity. In order to advance clinical practice in this regard, it is necessary to better understand the interactions that occur between functional neuromuscular activity and the resulting cortical plasticity. This study tested whether the voluntary contraction of an antagonist muscle modulates the plasticity-like effect of continuous theta burst stimulation (cTBS) recorded from the agonist. The effects of various opposing torques produced by the antagonist were also measured. As a result, the suppressing effect of cTBS was enhanced by mild antagonist contraction, whereas effortful antagonist contraction suspended the plasticity caused by cTBS. In contrast, the antagonist contractions right after cTBS did not significantly influence the effect of cTBS. The results indicate that the antagonist activity alters the effect of cTBS, especially in protocols with synchronous magnetic stimulation and antagonist contraction. Such modulation on cTBS may be through a reciprocal mechanism within the motor cortex, although the spinal regulation of the motoneuronal pool cannot be fully excluded. The present findings are beneficial for elucidating the mechanism of neuromuscular control and for resolving related neurological disorders.


Assuntos
Braço/fisiologia , Córtex Motor/fisiologia , Contração Muscular/fisiologia , Plasticidade Neuronal/fisiologia , Desempenho Psicomotor/fisiologia , Volição/fisiologia , Eletromiografia , Potencial Evocado Motor , Feminino , Humanos , Masculino , Fatores de Tempo , Estimulação Magnética Transcraniana/métodos , Adulto Jovem
10.
J Parkinsons Dis ; 14(2): 283-296, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38457151

RESUMO

Background: Task prioritization involves allocating brain resources in a dual-task scenario, but the mechanistic details of how prioritization strategies affect dual-task walking performance for Parkinson's disease (PD) are little understood. Objective: We investigated the performance benefits and corresponding neural signatures for people with PD during dual-task walking, using gait-prioritization (GP) and manual-prioritization (MP) strategies. Methods: Participants (N = 34) were asked to hold two inter-locking rings while walking and to prioritize either taking big steps (GP strategy) or separating the two rings (MP strategy). Gait parameters and ring-touch time were measured, and scalp electroencephalograph was performed. Results: Compared with the MP strategy, the GP strategy yielded faster walking speed and longer step length, whereas ring-touch time did not significantly differ between the two strategies. The MP strategy led to higher alpha (8-12 Hz) power in the posterior cortex and beta (13-35 Hz) power in the left frontal-temporal area, but the GP strategy was associated with stronger network connectivity in the beta band. Changes in walking speed and step length because of prioritization negatively correlated with changes in alpha power. Prioritization-related changes in ring-touch time correlated negatively with changes in beta power but positively with changes in beta network connectivity. Conclusions: A GP strategy in dual-task walking for PD can enhance walking speed and step length without compromising performance in a secondary manual task. This strategy augments attentional focus and facilitates compensatory reinforcement of inter-regional information exchange.


Assuntos
Doença de Parkinson , Humanos , Doença de Parkinson/complicações , Caminhada , Marcha , Atenção , Análise e Desempenho de Tarefas
11.
Geroscience ; 2024 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-38910193

RESUMO

Virtual error amplification (VEA) in visual feedback enhances attentive control over postural stability, although the neural mechanisms are still debated. This study investigated the distinct cortical control of unsteady stance in older adults using VEA through cross-frequency modulation of postural fluctuations and scalp EEG. Thirty-seven community-dwelling older adults (68.1 ± 3.6 years) maintained an upright stance on a stabilometer while receiving either VEA or real error feedback. Along with postural fluctuation dynamics, phase-amplitude coupling (PAC) and amplitude-amplitude coupling (AAC) were analyzed for postural fluctuations under 2 Hz and EEG sub-bands (theta, alpha, and beta). The results revealed a higher mean frequency of the postural fluctuation phase (p = .005) and a greater root mean square of the postural fluctuation amplitude (p = .003) with VEA compared to the control condition. VEA also reduced PAC between the postural fluctuation phase and beta-band EEG in the left frontal (p = .009), sensorimotor (p = .002), and occipital (p = .018) areas. Conversely, VEA increased the AAC of posture fluctuation amplitude and beta-band EEG in FP2 (p = .027). Neither theta nor alpha band PAC or AAC were affected by VEA. VEA optimizes postural strategies in older adults during stabilometer stance by enhancing visuospatial attentive control of postural responses and facilitating the transition of motor states against postural perturbations through a disinhibitory process. Incorporating VEA into virtual reality technology is advocated as a valuable strategy for optimizing therapeutic interventions in postural therapy, particularly to mitigate the risk of falls among older adults.

12.
Med Sci Sports Exerc ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38689440

RESUMO

PURPOSE: Despite its susceptibility to muscle fatigue, combined neuromuscular electrical stimulation (NMES) and blood flow restriction (BFR) is an effective regimen for managing muscle atrophy when traditional resistance exercises are not feasible. This study investigated the potential of low-level laser therapy (LLLT) in reducing muscle fatigue after the application of combined NMES and BFR. METHODS: Thirty-six healthy adults were divided into control and LLLT groups. The LLLT group received 60 J of 850 nm wavelength LLLT before a training program of combined NMES and BFR of the non-dominant extensor carpi radialis longus (ECRL). The control group followed the same protocol but received sham laser therapy. Assessments included maximal voluntary contraction (MVC), ECRL mechanical properties, and isometric force-tracking for wrist extension. RESULTS: The LLLT group exhibited a smaller normalized difference in MVC decrement (-4.01 ± 4.88%) than the control group (-23.85 ± 7.12%) (P < .001). The LLLT group demonstrated a smaller decrease in muscle stiffness of the ECRL compared to the control group, characterized by the smaller normalized changes in frequency (P = .002), stiffness (P = .002), and relaxation measures (P = .011) of mechanical oscillation waves. Unlike the control group, the LLLT group exhibited a smaller post-test increase in force fluctuations during force-tracking (P = .014), linked to the predominant recruitment of low-threshold MUs (P < .001) without fatigue-related increases in the discharge variability of high-threshold MUs (P > .05). CONCLUSIONS: LLLT pre-exposure reduces fatigue after combined NMES and BFR, preserving force generation, muscle stiffness, and force scaling. The functional benefits are achieved through fatigue-resistant activation strategies of motor unit recruitment and rate coding.

13.
Hum Brain Mapp ; 34(3): 635-50, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22109987

RESUMO

This study was undertaken to investigate the reciprocity effect between postural and suprapostural performances and its underlying neural mechanisms wherein subjects executed a perceptual-motor suprapostural task and maintained steady upright postures. Fourteen healthy individuals conducted force-matching maneuvers (static vs. dynamic) under two stance conditions (bipedal stance vs. unipedal stance); meanwhile, force-matching error, center of pressure dynamics, event-related potentials (ERPs), and the movement-related potential (MRP) were monitored. The behavioral results showed that force-matching error and postural sway were differently modulated by variations in stance pattern and force-matching version. Increase in postural challenge undermined the precision of static force-matching but facilitated a dynamic force-matching task. Both static and dynamic force-matching tasks improved postural control of unipedal stance but not of bipedal stance, in reference to the control conditions. ERP results revealed a stance-dependent N1 response, which was greater around the parietal cortex in the unipedal stance conditions. Instead, P2 was modulated by the effect of the suprapostural motor task, with a smaller P2 in the right parietal cortex for dynamic force-matching. Spatiotemporal evolution of the MRP commenced at the left frontal-central area and spread bilaterally over the frontal-central and parietal cortex. MRP onset was subject to an analogous interaction effect on force-matching performance. Our findings suggest postural prioritization and a structural alternation effect of stance pattern on postural performance, relevant to implicit expansion and selective allocation of central resources for relative task-loads of a postural-suprapostural task.


Assuntos
Mapeamento Encefálico , Encéfalo/fisiologia , Potenciais Evocados/fisiologia , Movimento/fisiologia , Equilíbrio Postural , Postura/fisiologia , Adulto , Alostase , Análise de Variância , Encéfalo/anatomia & histologia , Eletroencefalografia , Eletromiografia , Feminino , Pé/inervação , Humanos , Masculino , Tempo de Reação , Adulto Jovem
14.
NPJ Sci Learn ; 8(1): 3, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635300

RESUMO

This study investigated behavioral and cortical mechanisms for short-term postural training with error amplification (EA) feedback in the elderly. Thirty-six elderly subjects (65.7 ± 2.2 years) were grouped (control and EA, n = 18) for training in stabilometer balance under visual guidance. During the training session (8 training rounds of 60 s in Day 2), the EA group received visual feedback that magnified errors to twice the real size, whereas the control group received visual feedback that displayed real errors. Scalp EEG and kinematic data of the stabilometer plate and ankle joint were recorded in the pre-test (Day 1) and post-test (Day 3). The EA group (-46.5 ± 4.7%) exhibited greater post-training error reduction than that of the control group (-27.1 ± 4.0%)(p = 0.020), together with a greater decline in kinematic coupling between the stabilometer plate and ankle joint (EA: -26.6 ± 4.8%, control: 2.3 ± 8.6%, p = 0.023). In contrast to the control group, the EA group manifested greater reductions in mean phase-lag index (PLI) connectivity in the theta (4-7 Hz)(p = 0.011) and alpha (8-12 Hz) (p = 0.027) bands. Only the EA group showed post-training declines in the mean PLI in the theta and alpha bands. Minimal spanning tree analysis revealed that EA-based training led to increases in the diameter (p = 0.002) and average eccentricity (p = 0.004) of the theta band for enhanced performance monitoring and reduction in the leaf fraction (p = 0.030) of the alpha band for postural response with enhanced automaticity. In conclusion, short-term EA training optimizes balance skill, favoring multi-segment coordination for the elderly, which is linked to more sophisticated error monitoring with less attentive control over the stabilometer stance.

15.
Med Sci Sports Exerc ; 55(7): 1326-1333, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-36878185

RESUMO

PURPOSE: Despite early development of muscle fatigue, ischemic preconditioning is gaining popularity for strength training combined with low-load resistance exercise. This study investigated the effect of low-level laser (LLL) on postcontraction recovery with ischemic preconditioning. METHODS: Forty healthy adults (22.9 ± 3.5 yr) were allocated into sham (11 men, 9 women) and LLL (11 men, 9 women) groups. With ischemic preconditioning, they were trained with three bouts of intermittent wrist extension of 40% maximal voluntary contraction (MVC). During the recovery period, the LLL group received LLL (wavelength of 808 nm, 60 J) on the working muscle, whereas the sham group received no sham therapy. MVC, force fluctuations, and discharge variables of motor units (MU) for a trapezoidal contraction were compared between groups at baseline (T0), postcontraction (T1), and after-recovery (T2). RESULTS: At T2, the LLL group exhibited a higher normalized MVC (T2/T0; 86.22% ± 12.59%) than that of the sham group (71.70% ± 13.56%; P = 0.001). The LLL group had smaller normalized force fluctuations (LLL, 94.76% ± 21.95%; sham, 121.37% ± 29.02%; P = 0.002) with greater normalized electromyography amplitude (LLL, 94.33% ± 14.69%; sham, 73.57% ± 14.94%; P < 0.001) during trapezoidal contraction. In the LLL group, the smaller force fluctuations were associated with lower coefficients of variation of interspike intervals of MUs (LLL, 0.202 ± 0.053; sham, 0.208 ± 0.048; P = 0.004) with higher recruitment thresholds (LLL, 11.61 ± 12.68 %MVC; sham, 10.27 ± 12.73 %MVC; P = 0.003). CONCLUSIONS: LLL expedites postcontraction recovery with ischemic preconditioning, manifesting as superior force generation capacity and force precision control for activation of MU with a higher recruitment threshold and lower discharge variability.


Assuntos
Precondicionamento Isquêmico , Terapia com Luz de Baixa Intensidade , Adulto , Masculino , Humanos , Feminino , Músculo Esquelético/fisiologia , Eletromiografia , Fadiga Muscular/fisiologia , Contração Isométrica/fisiologia , Contração Muscular/fisiologia
16.
Front Physiol ; 14: 1066325, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969593

RESUMO

Visual feedback that reinforces accurate movements may motivate skill acquisition by promoting self-confidence. This study investigated neuromuscular adaptations to visuomotor training with visual feedback with virtual error reduction. Twenty-eight young adults (24.6 ± 1.6 years) were assigned to error reduction (ER) (n = 14) and control (n = 14) groups to train on a bi-rhythmic force task. The ER group received visual feedback and the displayed errors were 50% of the real errors in size. The control group was trained with visual feedback with no reduction in errors. Training-related differences in task accuracy, force behaviors, and motor unit discharge were contrasted between the two groups. The tracking error of the control group progressively declined, whereas the tracking error of the ER group was not evidently reduced in the practice sessions. In the post-test, only the control group exhibited significant task improvements with smaller error size (p = .015) and force enhancement at the target frequencies (p = .001). The motor unit discharge of the control group was training-modulated, as indicated by a reduction of the mean inter-spike interval (p = .018) and smaller low-frequency discharge fluctuations (p = .017) with enhanced firing at the target frequencies of the force task (p = .002). In contrast, the ER group showed no training-related modulation of motor unit behaviors. In conclusion, for young adults, ER feedback does not induce neuromuscular adaptations to the trained visuomotor task, which is conceptually attributable to intrinsic error dead-zones.

17.
Sports Biomech ; : 1-16, 2023 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-37458569

RESUMO

This study aimed to investigate the hamstring onset time and recruitment level during jumping tasks in athletes with chronic hamstring strain injuries. Thirteen hamstring injured athletes and thirteen matched healthy athletes were recruited. Activation onset time and muscle recruitment (median frequency of the EMG) of the lateral hamstring (LH) and medial hamstring (MH) was measured during double leg jumps in vertical and horizontal directions on the force platforms. The peak vertical ground reaction force and loading rate were obtained for all jumps. The injured group showed a delayed onset time (p = 0.029) and a lower recruitment of the LH during the landing (p = 0.018) than the control group. Activation deficits in the injured group led to a higher landing force and loading rate. Additionally, the LH and MH were lesser recruited in the vertical direction than the horizontal directions in the landing. In conclusion, athletes with hamstring injuries show hamstring activation deficits of the injured leg during jumping leading to degrading jump-landing performance. Also, jumping in different directions play a role to modify the recruitment of the hamstrings in the injured athletes. Therefore, movement plane is suggested to be considered in clinical rehabilitation for the hamstring injury.

18.
Sports Biomech ; : 1-19, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37272087

RESUMO

It is unclear how hamstring stiffness influences lower limb muscle activation during jump-landing mechanics. The study aimed to investigate the role of the hamstring stiffness on lower limb muscle recruitment during jumping manoeuvres. Thirty male athletes were recruited and allocated into high- and low-stiffness groups. Hamstring stiffness was determined as the average stiffness of bilateral hamstrings using a MyotonPRO. Surface electromyography of the bilateral gluteus maximus, quadriceps, and hamstring muscles was assessed during the takeoff, at ground contact, and at landing, while ground reaction force (GRF) was measured during the squat jump, countermovement jump, and drop vertical jump. The results showed that athletes with greater hamstring stiffness exhibited a higher median frequency of the lateral hamstrings in both limbs and the vastus medialis in the dominant limb than the low-stiffness group during takeoff, adjustment, and landing phases for all vertical jumps. The high stiffness group landed with lower vertical GRF in the drop vertical jump. In conclusion, athletes with high hamstring stiffness showed greater motor unit recruitment during takeoff and landing phases. This recruitment did not influence takeoff performance but aid with absorbing landing force. Therefore, the contribution of the lower limb muscle stiffness should be considered in sports activities.

19.
Front Physiol ; 14: 1178557, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37637142

RESUMO

Objective: This study investigated the neuromuscular control of increasing and releasing force in patients with chronic lateral epicondylitis (CLE). Methods: Fifteen patients with CLE (10 males, 5 females, 46.5 ± 6.3 years) and fifteen healthy participants (9 males, 6 females, 45.3 ± 2.5 years) participated in this study. In addition to power grip and maximal voluntary contraction (MVC) of wrist extension, force fluctuation dynamics and characteristics of inter-spike intervals (ISI) of motor units (MUs) with various recruitment thresholds in the extensor carpi radialis brevis (ECRB) and extensor carpi radialis longus (ECRL) during a designated force-tracking task with a trapezoidal target (0%-75%-0% MVC) were assessed. Results: Besides a smaller MVC of wrist extension, the patients exhibited significantly greater task errors (p = 0.007) and force fluctuations (p = 0.001) during force increment than the healthy counterparts. Nevertheless, no force variables significantly differed between groups during force release (p > 0.05). During force increment, the amplitudes of the motor unit action potential of the ECRB and ECRL muscles of the patients were smaller than those of the heathy counterparts (p < 0.001). The patient group also exhibited a higher percentage of motor units (MU) with lower recruitment threshold (<5% MVC) in the ECRL/ECRB muscles and a lower percentage of MU with higher recruitment threshold (>40% MVC) in the ECRB muscle, compared to the healthy group. During force increment, the patient group exhibited a higher rate of decrease in inter-spike intervals (ISIs) of motor units with lower recruitment thresholds (<10% MVC) in the ECRB and ECRL muscles, compared to the control group (p < 0.005). Conclusion: The patients with CLE exhibited more pronounced impairment in increasing force than in releasing force. This impairment in increasing force is attributed to deficits in tendon structure and degenerative changes in the larger motor units of the wrist extensors. To compensate for the neuromuscular deficits, the rate of progressive increase in discharge rate of the remaining smaller motor units (MUs) is enhanced to generate force. Significance: The deficits in neuromuscular control observed in CLE with degenerative changes cannot be fully explained by the experimental pain model, which predicts pain-related inhibition on low-threshold motor units.

20.
Arch Phys Med Rehabil ; 93(3): 471-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22265343

RESUMO

OBJECTIVES: To examine the effect of reaching in different directions on postural adjustment in children with diplegic cerebral palsy (CP), and to examine the relationship between hand reach performance and postural adjustment, and between postural control ability and postural adjustment. DESIGN: Cross-sectional study. SETTING: A movement science laboratory at a medical university. PARTICIPANTS: Children with CP (n=12) and typically developing (TD) children (n=16). INTERVENTIONS: Not applicable. MAIN OUTCOME MEASURES: Two force platforms were used to measure the ground reaction force (GRF) and center of pressure (COP) data. Absolute peak COP velocity, COP sway ratio (SR), and mean GRF in the anterior posterior direction during the acceleration and deceleration segments of a reaching task were the main outcome measures. RESULTS: Children with CP showed a greater absolute peak COP velocity in the medial lateral direction, a smaller SR (wider COP pattern), and greater amplitude of force modulation (exaggerated postural adjustments) than TD children in lateral or medial reaches. There was a moderate correlation between SR and total Pediatric Reach Test score. The chair SR was also negatively correlated with the hand movement units. CONCLUSIONS: Children with CP showed wider, more crooked, and less efficient COP patterns than TD children, especially on medial or lateral reaches. Reaching medially or laterally involves trunk rotation, which produces more postural challenges than reaching anteriorly to children with CP. The patterns of postural adjustments in children with CP were correlated with their postural control ability and hand-reach smoothness.


Assuntos
Paralisia Cerebral/fisiopatologia , Paralisia Cerebral/reabilitação , Mãos , Equilíbrio Postural , Criança , Estudos Transversais , Feminino , Humanos , Masculino , Espasticidade Muscular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA