Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Plant Mol Biol ; 111(6): 523-539, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36973492

RESUMO

Seed dormancy is an important agronomic trait under the control of complex genetic and environmental interactions, which have not been yet comprehensively understood. From the field screening of rice mutant library generated by a Ds transposable element, we identified a pre-harvest sprouting (PHS) mutant dor1. This mutant has a single insertion of Ds element at the second exon of OsDOR1 (LOC_Os03g20770), which encodes a novel seed-specific glycine-rich protein. This gene successfully complemented the PHS phenotype of dor1 mutant and its ectopic expression enhanced seed dormancy. Here, we demonstrated that OsDOR1 protein binds to the GA receptor protein, OsGID1 in rice protoplasts, and interrupts with the formation OsGID1-OsSLR1 complex in yeast cells. Co-expression of OsDOR1 with OsGID1 in rice protoplasts attenuated the GA-dependent degradation of OsSLR1, the key repressor of GA signaling. We showed the endogenous OsSLR1 protein level in the dor1 mutant seeds is significantly lower than that of wild type. The dor1 mutant featured a hypersensitive GA-response of α-amylase gene expression during seed germination. Based on these findings, we suggest that OsDOR1 is a novel negative player of GA signaling operated in the maintenance of seed dormancy. Our findings provide a novel source of PHS resistance.


Assuntos
Oryza , Dormência de Plantas , Dormência de Plantas/genética , Oryza/genética , Giberelinas/metabolismo , Sementes/genética , Glicina/metabolismo
2.
J Exp Bot ; 73(3): 817-834, 2022 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-34698829

RESUMO

Protein storage vacuoles (PSVs) in aleurone cells coalesce during germination, and this process is highly coupled with mobilization of PSV reserves, allowing de novo synthesis of various hydrolases in aleurone cells for endosperm degradation. Here we show that in barley (Hordeum vulgare L.) oleosins, the major integral proteins of oleosomes are encoded by four genes (HvOle1 to 4), and the expression of HvOle1 and HvOle3 is strongly up-regulated by abscisic acid (ABA), which shows antagonism to gibberellic acid. In aleurone cells, all HvOLEs were subcellularly targeted to the tonoplast of PSVs. Gain-of-function analyses revealed that HvOLE3 effectively delayed PSV coalescence, whereas HvOLE1 only had a moderate effect, with no notable effect of HvOLE2 and 4. With regard to longevity, HvOLE3 chiefly outperformed other HvOLEs, followed by HvOLE1. Experiments swapping the N- and C-terminal domain between HvOLE3 and other HvOLEs showed that the N-terminal region of HvOLE3 is mainly responsible, with some positive effect by the C-terminal region, for mediating the specific preventive effect of HvOLE3 on PSV coalescence. Three ACGT-core elements and the RY-motif were responsible for ABA induction of HvOle3 promoter activity. Transient expression assays using aleurone protoplasts demonstrated that transcriptional activation of the HvOle3 promoter was mediated by transcription factors HvABI3 and HvABI5, which acted downstream of protein kinase HvPKABA1.


Assuntos
Ácido Abscísico , Hordeum , Ácido Abscísico/metabolismo , Giberelinas/metabolismo , Hordeum/metabolismo , Proteínas de Plantas/metabolismo , Vacúolos/metabolismo
3.
J Integr Plant Biol ; 58(2): 127-35, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25951042

RESUMO

We characterized the function of the rice cytosolic hexokinase OsHXK7 (Oryza sativa Hexokinase7), which is highly upregulated when seeds germinate under O2 -deficient conditions. According to transient expression assays that used the promoter:luciferase fusion construct, OsHXK7 enhanced the glucose (Glc)-dependent repression of a rice α-amylase gene (RAmy3D) in the mesophyll protoplasts of maize, but its catalytically inactive mutant alleles did not. Consistently, the expression of OsHXK7, but not its catalytically inactive alleles, complemented the Arabidopsis glucose insensitive2-1 (gin2-1) mutant, thereby resulting in the wild type characteristics of Glc-dependent repression, seedling development, and plant growth. Interestingly, OsHXK7-mediated Glc-dependent repression was abolished in the O2 -deficient mesophyll protoplasts of maize. This result provides compelling evidence that OsHXK7 functions in sugar signaling via a glycolysis-dependent manner under normal conditions, but its signaling role is suppressed when O2 is deficient. The germination of two null OsHXK7 mutants, oshxk7-1 and oshxk7-2, was affected by O2 deficiency, but overexpression enhanced germination in rice. This result suggests the distinct role that OsHXK7 plays in sugar metabolism and efficient germination by enforcing glycolysis-mediated fermentation in O2 -deficient rice.


Assuntos
Metabolismo dos Carboidratos , Citosol/enzimologia , Hexoquinase/metabolismo , Oryza/enzimologia , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Transdução de Sinais , Alelos , Biocatálise/efeitos dos fármacos , Metabolismo dos Carboidratos/efeitos dos fármacos , Germinação/efeitos dos fármacos , Glucose/farmacologia , Células do Mesofilo/efeitos dos fármacos , Células do Mesofilo/metabolismo , Mutação , Oryza/efeitos dos fármacos , Oxigênio/metabolismo , Fosforilação/efeitos dos fármacos , Plantas Geneticamente Modificadas , Protoplastos/efeitos dos fármacos , Protoplastos/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais/efeitos dos fármacos , Transformação Genética/efeitos dos fármacos , Zea mays/efeitos dos fármacos , Zea mays/metabolismo
4.
Dev Biol ; 386(1): 12-24, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24355747

RESUMO

Reproductive success of angiosperms relies on the precise development of the gynoecium and the anther, because their primary function is to bear and to nurture the embryo sac/female gametophyte and pollen, in which the egg and sperm cells, respectively, are generated. It has been known that the GRF-INTERACTING FACTOR (GIF) transcription co-activator family of Arabidopsis thaliana (Arabidopsis) consists of three members and acts as a positive regulator of cell proliferation. Here, we demonstrate that GIF proteins also play an essential role in development of reproductive organs and generation of the gamete cells. The gif1 gif2 gif3 triple mutant, but not the single or double mutants, failed to establish normal carpel margin meristem (CMM) and its derivative tissues, such as the ovule and the septum, resulting in a split gynoecium and no observable embryo sac. The gif triple mutant also displayed severe structural and functional defects in the anther, producing neither microsporangium nor pollen grains. Therefore, we propose that the GIF family of Arabidopsis is a novel and essential component required for the cell specification maintenance during reproductive organ development and, ultimately, for the reproductive competence.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Transativadores/genética , Transativadores/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Meristema/crescimento & desenvolvimento , Microscopia Eletrônica de Varredura , Microscopia de Interferência , Família Multigênica , Mutação , Óvulo Vegetal/crescimento & desenvolvimento , Fenótipo , Infertilidade das Plantas , Plantas Geneticamente Modificadas , Pólen/crescimento & desenvolvimento
5.
Plant Mol Biol ; 89(4-5): 529-38, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26433582

RESUMO

The cell proliferation process of aerial lateral organs, such as leaves and flowers, is coordinated by complex genetic networks that, in general, converge on the cell cycle. The Arabidopsis thaliana NGATHA (AtNGA) family comprises four members that belong to the B3-type transcription factor superfamily, and has been suggested to be involved in growth and development of aerial lateral organs, although its role in the cell proliferation and expansion processes remains to be resolved in more detail. In order to clarify the role of AtNGAs in lateral organ growth, we took a systematic approach using both the loss- and gain-of-functional mutants of all four members. Our results showed that overexpressors of AtNGA1 to AtNGA4 developed small, narrow lateral organs, whereas the nga1 nga2 nga3 nga4 quadruple mutant produced large, wide lateral organs. We found that cell numbers of the lateral organs were significantly affected: a decrease in overexpressors and, inversely, an increase in the quadruple mutant. Kinematic analyses on leaf growth revealed that, compared with the wild type, the overexpressors displayed a lower activity of cell proliferation and yet the mutant a higher activity. Changes in expression of cell cycle-regulating genes were well in accordance with the cell proliferation activities, establishing that the AtNGA transcription factors act as bona fide negative regulators of the cell proliferation of aerial lateral organs.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Fatores de Transcrição/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proliferação de Células/genética , Proliferação de Células/fisiologia , Genes de Plantas , Genes cdc , Mutação , Folhas de Planta/citologia , Folhas de Planta/crescimento & desenvolvimento , Folhas de Planta/metabolismo , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética
6.
J Exp Bot ; 66(5): 1191-203, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25477530

RESUMO

Tonoplast intrinsic proteins (TIPs) are integral membrane proteins that are known to function in plants as aquaporins. Here, we propose another role for TIPs during the fusion of protein storage vacuoles (PSVs) in aleurone cells, a process that is promoted by gibberellic acid (GA) and prevented by abscisic acid (ABA). Studies of the expression of barley (Hordeum vulgare) TIP genes (HvTIP) showed that GA specifically decreased the abundance of HvTIP1;2 and HvTIP3;1 transcripts, while ABA strongly increased expression of HvTIP3;1. Increased or decreased expression of HvTIP3;1 interfered with the hormonal effects on vacuolation in aleurone protoplasts. HvTIP3;1 gain-of-function experiments delayed GA-induced vacuolation, whereas HvTIP3;1 loss-of-function experiments promoted vacuolation in ABA-treated aleurone cells. These results indicate that TIP plays a key role in preventing the coalescence of small PSVs in aleurone cells. Hormonal regulation of the HvTIP3;1 promoter is similar to the regulation of the endogenous gene, indicating that induction of the transcription of HvTIP3;1 by ABA is a critical factor in the prevention of PSV coalescence in response to ABA. Promoter analysis using deletions and site-directed mutagenesis of sequences identified three cis-acting elements that are responsible for ABA responsiveness in the HvTIP3;1 promoter. Promoter analysis also showed that ABA responsiveness of the HvTIP3;1 promoter is likely to occur via a unique regulatory system distinct from that involving the ABA-response promoter complexes.


Assuntos
Ácido Abscísico/metabolismo , Hordeum/metabolismo , Proteínas de Membrana/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação para Cima , Vacúolos/metabolismo , Regulação da Expressão Gênica de Plantas , Hordeum/genética , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Protoplastos/metabolismo , Vacúolos/genética
7.
J Exp Bot ; 66(15): 4835-49, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26136267

RESUMO

Previous publications have shown that BRI1 EMS suppressor 1 (BES1), a positive regulator of the brassinosteroid (BR) signalling pathway, enhances cell divisions in the quiescent centre (QC) and stimulates columella stem cell differentiation. Here, it is demonstrated that BZR1, a BES1 homologue, also promotes cell divisions in the QC, but it suppresses columella stem cell differentiation, opposite to the action of BES1. In addition, BR and its BZR1-mediated signalling pathway are shown to alter the expression/subcellular distribution of pin-formed (PINs), which may result in changes in auxin movement. BR promotes intense nuclear accumulation of BZR1 in the root tip area, and the binding of BZR1 to the promoters of several root development-regulating genes, modulating their expression in the root stem cell niche area. These BZR1-mediated signalling cascades may account for both the ectopic activation of QC cell divisions as well as the suppression of the columella stem cell differentiation. They could also inhibit auxin-dependent distal stem cell differentiation by antagonizing the auxin/WOX5-dependent pathway. In conclusion, BZR1-/BES1-mediated BR signalling pathways show differential effects on the maintenance of root apical meristem activities: they stimulate ectopic QC division while they show opposite effects on the differentiation of distal columella stem cells in a BR concentration- and BZR1-/BES1-dependent manner.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Proteínas Nucleares/genética , Triazóis/farmacologia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Brassinosteroides/metabolismo , Proteínas de Ligação a DNA , Regulação para Baixo , Ácidos Indolacéticos/metabolismo , Proteínas Nucleares/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Raízes de Plantas/metabolismo
8.
J Exp Bot ; 65(15): 4317-34, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24821952

RESUMO

Haematococcus pluvialis cells predominantly remain in the macrozooid stage under favourable environmental conditions but are rapidly differentiated into haematocysts upon exposure to various environmental stresses. Haematocysts are characterized by massive accumulations of astaxanthin sequestered in cytosolic oil globules. Lipidomic analyses revealed that synthesis of the storage lipid triacylglycerol (TAG) was substantially stimulated under high irradiance. Simultaneously, remodelling of membrane glycerolipids occurred as a result of dramatic reductions in chloroplast membrane glycolipids but remained unchanged or declined slightly in extraplastidic membrane glycerolipids. De novo assembly of transcriptomes revealed the genomic and metabolic features of this unsequenced microalga. Comparative transcriptomic analysis showed that so-called resting cells (haematocysts) may be more active than fast-growing vegetative cells (macrozooids) regarding metabolic pathways and functions. Comparative transcriptomic analyses of astaxanthin biosynthesis suggested that the non-mevalonate pathway mediated the synthesis of isopentenyl diphosphate, as the majority of genes involved in subsequent astaxanthin biosynthesis were substantially up-regulated under high irradiance, with the genes encoding phytoene synthase, phytoene desaturase, and ß-carotene hydroxylase identified as the most prominent regulatory components. Accumulation of TAG under high irradiance was attributed to moderate up-regulation of de novo fatty acid biosynthesis at the gene level as well as to moderate elevation of the TAG assembly pathways. Additionally, inferred from transcriptomic differentiation, an increase in reactive oxygen species (ROS) scavenging activity, a decrease in ROS production, and the relaxation of over-reduction of the photosynthetic electron transport chain will work together to protect against photooxidative stress in H. pluvialis under high irradiance.


Assuntos
Clorófitas/metabolismo , Metabolismo dos Lipídeos , Estresse Oxidativo , Transcriptoma , Clorófitas/efeitos da radiação , Anotação de Sequência Molecular , Análise de Sequência de DNA , Luz Solar , Xantofilas/biossíntese
9.
J Plant Physiol ; 293: 154182, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277982

RESUMO

Maintenance of energy metabolism is critical for rice (Oryza sativa) tolerance under submerged cultivation. Here, OsHXK7 was the most actively induced hexokinase gene in the embryos of hypoxically germinating rice seeds. Suspension-cultured cells established from seeds of T-DNA null mutants for the OsHXK7 locus did not regrow after 3-d-hypoxic stress and showed increased susceptibility to low-oxygen stress-in terms of viability-and decreased alcoholic fermentation activities compared to those of the wild-type. The promoter element containing the TGACG-motif, a well-known target site for the basic leucine zipper (bZIP) transcription factors, was responsible for sugar regulation of the OsHXK7 promoter activity. Systematic screening of the OsbZIP genes showing the similar expression patterns to that of OsHXK7 in the transcriptomic datasets produced two bZIP genes, OsbZIP38 and 87, belonging to the S1 bZIP subfamily as the candidate for the activator for this gene expression. Gain- and loss-of-function experiments through transient expression assays have demonstrated that these two bZIP proteins are indeed involved in the induction of OsHXK7 expression under starvation or low-energy conditions. Our finding suggests that C/S1 bZIP network-mediated hypoxic deregulation of sugar-responsive genes may work in concert for the molecular adaptation of rice cells to submergence.


Assuntos
Oryza , Oryza/metabolismo , Perfilação da Expressão Gênica , Regiões Promotoras Genéticas , Sementes/genética , Sementes/metabolismo , Açúcares/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Fatores de Transcrição de Zíper de Leucina Básica/genética , Fatores de Transcrição de Zíper de Leucina Básica/metabolismo
10.
Plant Physiol ; 159(3): 1001-12, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22582133

RESUMO

Sugars play important roles in many aspects of plant growth and development, acting as both energy sources and signaling molecules. With the successful use of genetic approaches, the molecular components involved in sugar signaling have been identified and their regulatory roles in the pathways have been elucidated. Here, we describe novel mutants of Arabidopsis (Arabidopsis thaliana), named glucose insensitive growth (gig), identified by their insensitivity to high-glucose (Glc)-induced growth inhibition. The gig mutant displayed retarded growth under normal growth conditions and also showed alterations in the expression of Glc-responsive genes under high-Glc conditions. Our molecular identification reveals that GIG encodes the plastidial copper (Cu) transporter PAA1 (for P(1B)-type ATPase 1). Interestingly, double mutant analysis indicated that in high Glc, gig is epistatic to both hexokinase1 (hxk1) and aba insensitive4 (abi4), major regulators in sugar and retrograde signaling. Under high-Glc conditions, the addition of Cu had no effect on the recovery of gig/paa1 to the wild type, whereas exogenous Cu feeding could suppress its phenotype under normal growth conditions. The expression of GIG/PAA1 was also altered by mutations in the nuclear factors HXK1, ABI3, and ABI4 in high Glc. Furthermore, a transient expression assay revealed the interaction between ABI4 and the GIG/PAA1 promoter, suggesting that ABI4 actively regulates the transcription of GIG/PAA1, likely binding to the CCAC/ACGT core element of the GIG/PAA1 promoter. Our findings indicate that the plastidial Cu transporter PAA1, which is essential for plastid function and/or activity, plays an important role in bidirectional communication between the plastid and the nucleus in high Glc.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crescimento & desenvolvimento , ATPases de Cloroplastos Translocadoras de Prótons/metabolismo , Cobre/metabolismo , Glucose/farmacologia , Mutação/genética , Plastídeos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , ATPases de Cloroplastos Translocadoras de Prótons/genética , Epistasia Genética/efeitos dos fármacos , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Genes de Plantas/genética , Teste de Complementação Genética , Loci Gênicos/genética , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Proteínas de Membrana Transportadoras/genética , Proteínas de Membrana Transportadoras/metabolismo , Modelos Biológicos , Plastídeos/efeitos dos fármacos , Fatores de Transcrição/metabolismo
11.
J Plant Physiol ; 264: 153471, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34315029

RESUMO

During germination, the availability of sugars, oxygen, or cellular energy fluctuates under dynamic environmental conditions, likely affecting the global RNA profile of rice genes. Most genes that exhibit sugar-regulation in rice embryos under aerobic conditions are responsive to low energy and anaerobic conditions, indicating that sugar regulation is strongly associated with energy and anaerobic signaling. The interference pattern of sugar regulation by either anaerobic or low energy conditions indicates that induction is likely the more prevalent regulatory mechanism than repression for altering the expression of sugar-regulated genes. Among the aerobically sugar-regulated genes, limited genes exhibit sugar regulation under anaerobic conditions, indicating that anaerobic conditions strongly influence sugar regulated gene expression. Anaerobically responsive genes substantially overlap with low energy responsive genes. In particular, the expression levels of anaerobically downregulated genes are consistent with those provoked by low energy conditions, suggesting that anaerobic downregulation results from the prevention of aerobic respiration due to the absence of the final electron acceptor, i.e., molecular oxygen. It has been noted that abscisic acid (ABA) responsive genes are over representative of genes upregulated under low energy conditions, in contrast to downregulated genes. This suggests that either ABA itself or upstream signaling components of the ABA signaling pathway are likely to be involved in the signaling pathways activated by low energy conditions.


Assuntos
Germinação , Oryza/embriologia , Sementes/metabolismo , Metabolismo Energético , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Análise de Sequência com Séries de Oligonucleotídeos , Oryza/crescimento & desenvolvimento , Oryza/metabolismo , Oxigênio/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Sementes/crescimento & desenvolvimento , Açúcares/metabolismo
12.
Planta ; 231(2): 349-60, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19924439

RESUMO

Large-scale RNA profiling revealed that high irradiance differentially regulated 577 out of 1,439 non-redundant genes of the Antarctic marine diatom Chaetoceros neogracile, represented on a custom cDNA chip, during 6 h of treatment. Among genes that were up- or down-regulated more than twofold within 30 min of treatment (310/1,439), about half displayed an acclimatory response during 6 h under high light. Expression of the remaining non-acclimatory genes also rapidly returned to initial levels within 30 min following a shift to low irradiance. High light altered expression of most of the photosynthesis genes (48/70), in contrast to genes in other functional categories. In addition, opposite response patterns were provoked in genes encoding fucoxanthin chlorophyll a/c binding protein (FCP), the main component of the diatom light-harvesting complex; high irradiance caused a decrease in expression of most FCP genes, but drove the rapid and specific up-regulation of ten others. C. neogracile responded very promptly to a change in light intensity by rapidly adjusting the transcript levels of FCP genes up-regulated by high light, and these dynamic adjustments coincided well with diatoxanthin (Dtx) levels formed by the xanthophyll cycle under the same conditions. The observation that the non-photochemical quenching (NPQ) capacity of this polar diatom was highly dependent on Dtx, which could bind to FCP and trigger NPQ, suggests that the up-regulated FCP gene products may participate in a photoprotective process as Dtx-binding proteins.


Assuntos
Diatomáceas/genética , Diatomáceas/efeitos da radiação , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos da radiação , Luz , Aclimatação/genética , Aclimatação/efeitos da radiação , Diatomáceas/crescimento & desenvolvimento , Complexos de Proteínas Captadores de Luz/genética , Complexos de Proteínas Captadores de Luz/metabolismo , Filogenia , Fatores de Tempo , Xantofilas/metabolismo
13.
J Exp Bot ; 61(12): 3235-44, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20530196

RESUMO

Rice has the unique ability to express alpha-amylase under anoxic conditions, a feature that is critical for successful anaerobic germination and growth. Previously, anaerobic conditions were shown to up-regulate the expression of Amy3 subfamily genes (Amy3B/C, 3D, and 3E) in rice embryos. These genes are known to be feedback regulated by the hydrolytic products of starchy endosperm such as the simple sugar glucose. It was found that oxygen deficiency interferes with the repression of Amy3D gene expression imposed by low concentrations of glucose but not with that imposed by higher amounts. This differential anoxic de-repression depending on sugar concentration suggests the presence of two distinct pathways for sugar regulation of Amy3D gene expression. Anoxic de-repression can be mimicked by treating rice embryos with inhibitors of ATP synthesis during respiration. Other sugar-regulated rice alpha-amylase genes, Amy3B/C and 3E, behave similarly to Amy3D. Treatment with a respiratory inhibitor or anoxia also relieved the sugar repression of the rice CIPK15 gene, a main upstream positive regulator of SnRK1A that is critical for Amy3D expression in response to sugar starvation. SnRK1A accumulation was previously shown to be required for MYBS1 expression, which transactivates Amy3D by binding to a cis-acting element found in the proximal region of all Amy3 subfamily gene promoters (the TA box). Taken together, these results suggest that prevention of oxidative phosphorylation by oxygen deficiency interferes with the sugar repression of Amy3 subfamily gene expression, leading to their enhanced expression in rice embryos during anaerobic germination.


Assuntos
Metabolismo dos Carboidratos , Oryza/genética , Proteínas de Plantas/metabolismo , alfa-Amilases/metabolismo , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Germinação , Oryza/enzimologia , Fosforilação Oxidativa , Oxigênio/metabolismo , Proteínas de Plantas/genética , RNA de Plantas/genética , Sequências Reguladoras de Ácido Nucleico , Sementes/enzimologia , Sementes/genética , alfa-Amilases/genética
14.
J Plant Physiol ; 251: 153186, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32502917

RESUMO

The coalescence of protein storage vacuoles (PSVs) is one of the most prominent cellular changes occurring in cereal aleurone cells during germination. This structural change is highly coupled with the functional transition of this organelle from a storage compartment to a lytic section. Gibberellic acid (GA) promotes this process, whereas abscisic acid (ABA) prevents it. Previously, we demonstrated that ABA-inducible HvTIP3;1 plays a decisive role in ABA-mediated prevention of PSV fusion. In this follow-up study, we examined whether the aquaporin activity of tonoplast intrinsic protein (TIP) is related to its preventive effect on PSV fusion using various functional mutants. The defective forms of aquaporin (HvTIP3;1m and HvTIP3;1ΔNPA-GFPs for HvTIP3;1, and HvTIP1;2m for HvTIP1;2) were found to be less effective than the usual form in delaying the PSV fusion process occurring in GA-treated cells. In contrast, overexpression of HvTIP3;1m reduced the preventive effect of ABA on PSV fusion. Upon inhibition of aquaporin activity using mercury, PSV fusion occurred to a greater extent in ABA-treated barley protoplasts. These data suggest that the aquaporin activity of TIP is involved in the deterrent effect of TIP on PSV coalescence. TIP3-GFP barley transgenic seeds showed prolonged expression of the TIP3;1 transcript. Moreover, PSV fusion progressed at a much slower rate compared to wild type. Additionally, the degradation of storage proteins was not as efficient, suggesting that a metamorphic transition of PSVs to lytic organelles is closely correlated with the disappearance of HvTIPs and the PSV fusion process.


Assuntos
Aquaporinas/metabolismo , Hordeum/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Plantas/metabolismo , Transporte Proteico , Vacúolos/metabolismo
15.
Plant Cell Physiol ; 49(4): 501-11, 2008 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-18296722

RESUMO

We define the photoresponsiveness, during seedling de-etiolation, of PHYTOCHROME-INTERACTING FACTOR 3-LIKE 1 (PIL1), initially identified by microarray analysis as an early-response gene that is robustly repressed by first exposure to light. We show that PIL1 mRNA abundance declines rapidly, with a half-time of 15 min, to a new steady-state level, 10-fold below the initial dark level, within 45 min of first exposure to red light. Analysis of phy-null mutants indicates that multiple phytochromes, including phyA and phyB, impose this repression. Conversely, PIL1 expression is rapidly derepressed by subsequent far-red irradiation of previously red light-exposed seedlings. However, the magnitude of this derepression is modulated over time, in a biphasic manner, in response to increasing duration of pre-exposure to continuous red light: (i) an early phase (up to about 6 h) of relatively rapidly increasing effectiveness of far-red reversal of repression, as declining phyA levels relieve initial very low fluence suppression of this response; and (ii) a second phase (beyond 6 h) of gradually declining effectiveness of far-red reversal, to only 20% of maximal derepression, within 36 h of continuous red light exposure, with no evidence of circadian modulation of this responsiveness, an observation in striking contrast to a previous report for entrained, green seedlings exposed to vegetative shade. These data, together with analysis of phytochrome signaling mutants and overexpressors with aberrant de-etiolation phenotypes, suggest that the second-phase decline in robustness of PIL1 derepression is an indirect consequence of the global developmental transition from the etiolated to the de-etiolated state, and that circadian coupling of derepression requires entrainment.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Fitocromo A/metabolismo , Fitocromo B/metabolismo , Proteínas Repressoras/metabolismo , Fatores de Transcrição/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/efeitos da radiação , Regulação da Expressão Gênica de Plantas/efeitos da radiação , Genótipo , Luz , Modelos Biológicos , Morfogênese/efeitos da radiação , Mutação/genética , Fenótipo , Fatores de Transcrição/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
16.
Biochem Biophys Res Commun ; 367(3): 635-41, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18187041

RESUMO

A customized cDNA chip analysis provided the relative expression profiling of 1439 ESTs of Chaetoceros neogracile in culture environments maintained between 4 and 10 degrees C. Among the 1439 probes, 21.5% were differentially regulated (2-fold) by the temperature upshift within three days. Up-regulation was more prominent among cytoprotective genes, whereas down-regulation was featured in photosynthetic genes. A third of the differentially expressed genes had an unknown function or no similarity to known genes, highlighting their potential importance as a resource to identify key players in the acclimation response of polar algae under thermal stress. Our transcriptome analysis also revealed novel aspects of temperature-responsive, coordinated changes in the abundance of specific mRNAs, along with the rapid establishment of molecular homeostasis in polar algae. Unexpectedly, a small set of genes encoding fucoxanthin chlorophyll a/c-binding proteins were rapidly up-regulated by thermal stress, implying that they have different roles other than light harvesting.


Assuntos
Aclimatação , Diatomáceas , Perfilação da Expressão Gênica , Resposta ao Choque Térmico/genética , Temperatura , Aclimatação/genética , Aclimatação/fisiologia , Regiões Antárticas , Diatomáceas/genética , Diatomáceas/crescimento & desenvolvimento , Diatomáceas/fisiologia , Regulação da Expressão Gênica de Plantas , Homeostase , Análise de Sequência com Séries de Oligonucleotídeos , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Mol Cells ; 25(3): 368-75, 2008 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-18443422

RESUMO

Approximately 120 UDP-glycosyltransferases (UGTs), which are classified into 14 distinct groups (A to N), have been annotated in the Arabidopsis genome. UGTs catalyze the transfer of sugars to various acceptor molecules including flavonoids. Previously, UGT71C1 was shown to glycosylate the 3-OH of hydroxycinnamates and flavonoids in vitro. Such secondary metabolites are known to play important roles in plant growth and development. To help define the role of UGT71C1 in planta, we investigated its expression patterns, and isolated and characterized a loss-of-function mutation in the UGT71C1 gene (named ugt71c1-1). Our analyses by quantitative real-time reverse transcriptase polymerase chain reaction (qRT-PCR), microarray data mining, and histochemical detection of GUS activity driven by the UGT71C1 promoter region, revealed the tissue-specific expression patterns of UGT71C1 with highest expression in roots. Interestingly, upon treatment with methyl viologen (MV, paraquat), ugt71c1-1 plants displayed enhanced resistance to oxidative stress, and ROS scavenging activity was higher than normal. Metabolite profiling revealed that the levels of two major glycosides of quercetin and kaempferol were reduced in ugt71c1-1 plants. In addition, when exposed to MV-induced oxidative stress, eight representative ROS response genes were expressed at lower levels in ugt71c1-1 plants, indicating that ugt71c1-1 probably has higher non-enzymatic antioxidant activity. Taken together, our results indicate that ugt71c1-1 has increased resistance to oxidative stress, suggesting that UGT71C1 plays a role in some glycosylation pathways affecting secondary metabolites such as flavonoids in response to oxidative stress.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Glicosiltransferases/metabolismo , Estresse Oxidativo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Glicosiltransferases/genética , Dados de Sequência Molecular , Mutação , Paraquat/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Distribuição Tecidual
18.
Plant Physiol Biochem ; 46(7): 685-693, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18504135

RESUMO

Calcium has been suggested as an important mediator of gravity signaling transduction within the root cap statocyte. In a horizontally-placed root, it is redistributed in the direction of the gravity vector (i.e. it moves downward) and its redistribution is closely correlated with auxin downward movement. However, the involvement of calcium in the regulation of ethylene-induced epinasty and auxin movement is not known. In this report, we examined the involvement of calcium in lateral auxin transport during ethylene-induced epinasty in an effort to understand the relationship among calcium, auxin, and ethylene. Ethylene-induced epinasty was further stimulated by exogenously applied Ca2+, the calcium effect being the strongest among divalent cations tested. Pretreatment with NPA, an auxin transport inhibitor, negated the promotive effect of calcium ions on the petiolar epinasty. Ethylene caused redistribution/differential accumulation of 45Ca2+ toward the morphologically lower (abaxial) side of the leaf petioles, an effect opposite to that of 14C-IAA redistribution. Verapamil, a Ca2+ channel blocker, inhibited ethylene-induced epinasty, as well as the redistribution of 14C-IAA and 45Ca2+. When the petiole was inverted in the presence or absence of ethylene, the direction of 45Ca2+ differential accumulation was still toward the morphologically abaxial side of the petiole during epinastic movement regardless of gravitational direction. These results suggest that gravity-insensitive, ethylene-induced Ca2+ redistribution and accumulation toward the abaxial side are closely coupled to the adaxial auxin redistribution/accumulation and, in turn, to the petiolar epinasty.


Assuntos
Cálcio/metabolismo , Etilenos/farmacologia , Ácidos Indolacéticos/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Ácido Abscísico/metabolismo , Cálcio/farmacologia , Cloreto de Cálcio/metabolismo , Cloreto de Cálcio/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Gravitropismo/efeitos dos fármacos , Ácidos Indolacéticos/farmacologia , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Modelos Biológicos , Reguladores de Crescimento de Plantas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Folhas de Planta/metabolismo
19.
J Plant Physiol ; 224-225: 103-111, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29614396

RESUMO

Recently, much effort has been made to determine the molecular links and cross-talk between sugar and abscisic acid (ABA) signaling pathways. ABA-inducible expression of OsTIP3;1, encoding a rice tonoplast intrinsic protein, was enhanced by sugar depletion. Such a stimulatory increase in OsTIP3;1 expression under sugar-starvation is possibly not owing to changes in endogenous ABA content. The transient expression assay indicated that the 5' flanking region of OsTIP3;1 delivered similar collaborative responsiveness to starvation and ABA, suggesting that this gene promoter could be a good molecular probe to examine the interaction between sugar and ABA signaling pathways. Targeted mutagenesis demonstrated that disruption of ACGT cores decreased the induction of OsTIP3;1 promoter activity under either starvation or ABA, whereas mutation of coupling element 1 (CE1), which is an ABI4 binding site, reversely increased it, suggesting that those two distinct cis-regulatory elements reciprocally regulate the responsiveness of this promoter to both sugar and ABA. Consistent with this result, antisense inhibition of ABI4 increased the OsTIP3;1 promoter activity. ABI4 expression was also enhanced by sugars and repressed by ABA, suggesting that reduced ABI4 binding to CE1 in the absence of sugar and presence of ABA could increase ABA-induction of the OsTIP3;1 promoter activity.


Assuntos
Ácido Abscísico/metabolismo , Aquaporinas/genética , Oryza/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Açúcares/metabolismo , Aquaporinas/metabolismo , Sequência de Bases , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas , Transdução de Sinais
20.
J Plant Physiol ; 215: 20-29, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28527335

RESUMO

Oleosins are the most abundant proteins in the monolipid layer surrounding neutral storage lipids that form oil bodies in plants. Several lines of evidence indicate that they are physiologically important for the maintenance of oil body structure and for mobilization of the lipids stored inside. Rice has six oleosin genes in its genome, the expression of all of which was found to be responsive to abscisic acid (ABA) in our examination of mature embryo and aleurone tissues. The 5'-flanking region of OsOle5 was initially characterized for its responsiveness to ABA through a transient expression assay system using the protoplasts from suspension-cultured rice cells. A series of successive deletions and site-directed mutations identified five regions critical for the hormonal induction of its promoter activity. A search for cis-acting elements in these regions deposited in a public database revealed that they contain various promoter elements previously reported to be involved in the ABA response of various genes. A gain-of-function experiment indicated that multiple copies of all five regions were sufficient to provide the minimal promoter with a distinct ABA responsiveness. Comparative sequence analysis of the short, but still ABA-responsive, promoters of OsOle genes revealed no common modular architecture shared by them, indicating that various distinct promoter elements and independent trans-acting factors are involved in the ABA responsiveness of rice oleosin multigenes.


Assuntos
Ácido Abscísico/farmacologia , Oryza/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Oryza/efeitos dos fármacos , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Regiões Promotoras Genéticas/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA