Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
EMBO J ; 39(24): e104719, 2020 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-33215742

RESUMO

Recent evidence suggests that animal microRNAs (miRNAs) can target coding sequences (CDSs); however, the pathophysiological importance of such targeting remains unknown. Here, we show that a somatic heterozygous missense mutation (c.402C>G; p.C134W) in FOXL2, a feature shared by virtually all adult-type granulosa cell tumors (AGCTs), introduces a target site for miR-1236, which causes haploinsufficiency of the tumor-suppressor FOXL2. This miR-1236-mediated selective degradation of the variant FOXL2 mRNA is preferentially conducted by a distinct miRNA-loaded RNA-induced silencing complex (miRISC) directed by the Argonaute3 (AGO3) and DHX9 proteins. In both patients and a mouse model of AGCT, abundance of the inversely regulated variant FOXL2 with miR-1236 levels is highly correlated with malignant features of AGCT. Our study provides a molecular basis for understanding the conserved FOXL2 CDS mutation-mediated etiology of AGCT, revealing the existence of a previously unidentified mechanism of miRNA-targeting disease-associated mutations in the CDS by forming a non-canonical miRISC.


Assuntos
Proteína Forkhead Box L2/genética , Proteína Forkhead Box L2/metabolismo , Tumor de Células da Granulosa/genética , MicroRNAs/metabolismo , Mutação , Fases de Leitura Aberta , Desequilíbrio Alélico , Animais , Apoptose , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Morte Celular/fisiologia , RNA Helicases DEAD-box/genética , RNA Helicases DEAD-box/metabolismo , Regulação Neoplásica da Expressão Gênica , Técnicas de Inativação de Genes , Tumor de Células da Granulosa/patologia , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , MicroRNAs/genética , Mutação de Sentido Incorreto , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , RNA Mensageiro/metabolismo , Transcriptoma
2.
Biochem Biophys Res Commun ; 695: 149495, 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38211532

RESUMO

Piwi and its partner, Piwi-interacting RNA (piRNA), are pivotal in suppressing the harmful effects of transposable elements (TEs) linked to genomic insertional mutagenesis. While primarily active in Drosophila's adult gonadal tissues, causing sterility in its absence, Piwi's role in post-embryonic development remains unclear. Our study reveals Piwi's functional presence in the larval fat body, where it governs developmental growth through systemic insulin/insulin-like growth factor (IGF) signaling (IIS). Piwi knockdown in the fat body resulted in dysregulated TE expression, reduced developmental rate and body growth, and diminished systemic IIS activity. Notably, Piwi knockdown increased Imaginal Morphogenic Protein Late 2 (Imp-L2) expression, akin to insulin-like growth factor-binding protein 7 (IGFBP7), reducing systemic IIS and inhibiting body growth. This unveils a novel role for Piwi in larval adipose tissues, emphasizing its importance in regulating systemic IIS and overall organismal growth.


Assuntos
Proteínas de Drosophila , Drosophila , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina , Animais , Tecido Adiposo/metabolismo , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Elementos de DNA Transponíveis , Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/genética , Peptídeos Semelhantes à Insulina , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo
3.
Cell ; 139(6): 1096-108, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-20005803

RESUMO

How body size is determined is a long-standing question in biology, yet its regulatory mechanisms remain largely unknown. Here, we find that a conserved microRNA miR-8 and its target, USH, regulate body size in Drosophila. miR-8 null flies are smaller in size and defective in insulin signaling in fat body that is the fly counterpart of liver and adipose tissue. Fat body-specific expression and clonal analyses reveal that miR-8 activates PI3K, thereby promoting fat cell growth cell-autonomously and enhancing organismal growth non-cell-autonomously. Comparative analyses identify USH and its human homolog, FOG2, as the targets of fly miR-8 and human miR-200, respectively. USH/FOG2 inhibits PI3K activity, suppressing cell growth in both flies and humans. FOG2 directly binds to p85alpha, the regulatory subunit of PI3K, and interferes with the formation of a PI3K complex. Our study identifies two novel regulators of insulin signaling, miR-8/miR-200 and USH/FOG2, and suggests their roles in adolescent growth, aging, and cancer.


Assuntos
Tamanho Corporal , Drosophila melanogaster/fisiologia , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Tecido Adiposo/metabolismo , Animais , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila , Drosophila melanogaster/genética , Humanos , MicroRNAs/genética , Mutação , Fatores de Transcrição/metabolismo
4.
BMC Biol ; 20(1): 258, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36397042

RESUMO

BACKGROUND: Commensal microorganisms have a significant impact on the physiology of host animals, including Drosophila. Lactobacillus and Acetobacter, the two most common commensal bacteria in Drosophila, stimulate fly development and growth, but the mechanisms underlying their functional interactions remain elusive. RESULTS: We found that imaginal morphogenesis protein-Late 2 (Imp-L2), a Drosophila homolog of insulin-like growth factor binding protein 7, is expressed in gut enterocytes in a bacteria-dependent manner, determining host dependence on specific bacteria for host development. Imp-L2 mutation abolished the stimulatory effects of Lactobacillus, but not of Acetobacter, on fly larval development. The lethality of the Imp-L2 mutant markedly increased under axenic conditions, which was reversed by Acetobacter, but not Lactobacillus, re-association. The host dependence on specific bacteria was determined by Imp-L2 expressed in enterocytes, which was repressed by Acetobacter, but not Lactobacillus. Mechanistically, Lactobacillus and Acetobacter differentially affected steroid hormone-mediated Imp-L2 expression and Imp-L2-specific FOXO regulation. CONCLUSIONS: Our finding may provide a way how host switches dependence between different bacterial species when benefiting from varying microbiota.


Assuntos
Drosophila melanogaster , Animais , Bactérias/genética , Drosophila , Peptídeos
5.
Proc Natl Acad Sci U S A ; 115(23): 5992-5997, 2018 06 05.
Artigo em Inglês | MEDLINE | ID: mdl-29784791

RESUMO

Nutritional condition during the juvenile growth period considerably affects final adult size. The insulin/insulin-like growth factor signaling (IIS)/target of rapamycin (TOR) nutrient-sensing pathway is known to regulate growth and metabolism in response to nutritional conditions. However, there is limited information on how endocrine pathways communicate nutritional information to different metabolic organs to regulate organismal growth. Here, we show that Imaginal morphogenesis protein-Late 2 (Imp-L2), a Drosophila homolog of insulin-like growth factor-binding protein 7 (IGFBP7), plays a key role in the nutritional control of organismal growth. Nutritional restriction during the larval growth period causes undersized adults, which is largely diminished by Imp-L2 mutation. We delineate a pathway in which nutritional restriction increases levels of the steroid hormone ecdysone, which, in turn, triggers ecdysone signaling-dependent Imp-L2 production from the fat body, a fly adipose organ, thereby attenuating peripheral IIS and body growth. Surprisingly, this endocrine pathway operates independent of the fat-body-TOR internal nutrient sensor, long believed to be the control center for nutrition-dependent growth. Our study reveals a previously unrecognized endocrine circuit mediating nutrition-dependent juvenile growth, which could also potentially be related to the insulin resistance frequently observed in puberty.


Assuntos
Drosophila , Proteínas de Ligação a Fator de Crescimento Semelhante a Insulina/metabolismo , Fenômenos Fisiológicos da Nutrição/fisiologia , Transdução de Sinais/fisiologia , Esteroides/metabolismo , Animais , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Drosophila/fisiologia , Feminino , Larva/crescimento & desenvolvimento , Larva/metabolismo , Larva/fisiologia , Masculino
8.
Microb Ecol ; 79(1): 241-251, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31250075

RESUMO

Commensal microbiota heavily influence metazoan host physiology. Drosophila melanogaster has been proven a valuable animal model for studying many aspects of host-microbiota interaction. Lactobacillus are the most common human probiotics and are also one of the major symbiotic bacteria in Drosophila. Although the beneficial effects of Lactobacillus on fly development and physiology have been recognized, how broadly these effects are observed across the Lactobacillus taxa remains largely unknown. In this study, four Lactobacillus species including five strains of L. plantarum were examined for their effects on fly larval development. Monoassociation of germ-free flies with L. rhamnosus (GG) most strongly accelerated fly larval development. Monoassociation with L. plantarum moderately accelerated fly development, but monoassociation with L. reuteri or L. sakei had marginal effects, despite similar bacterial loads in the host gut. An L. plantarum strain previously isolated from our lab rarely enhanced larval development, confirming the strain-specific effects of L. plantarum. The correlation between development-promoting effects and protein digestion activity in the host gut was found only among the members of L. plantarum species. Moreover, the cytoprotective response in the host gut known to be induced by L. plantarum was not correlated with development-promoting effects among any of the bacteria tested. Our results suggest that a broad range of Lactobacillus taxa are able to reside in the fly gut, but their ability to enhance host larval development is highly varied. This study may aid our understanding of the basic principles underlying the beneficial effects of probiotic commensal bacteria on metazoan development.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Lactobacillus/classificação , Larva/microbiologia , Animais , Drosophila melanogaster/genética , Drosophila melanogaster/microbiologia , Feminino , Lactobacillus/genética , Lactobacillus/isolamento & purificação , Larva/crescimento & desenvolvimento , Masculino , Filogenia , Especificidade da Espécie
9.
Genes Dev ; 26(13): 1427-32, 2012 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-22751499

RESUMO

Body size determination is a process that is tightly linked with developmental maturation. Ecdysone, an insect maturation hormone, contributes to this process by antagonizing insulin signaling and thereby suppressing juvenile growth. Here, we report that the microRNA miR-8 and its target, u-shaped (USH), a conserved microRNA/target axis that regulates insulin signaling, are critical for ecdysone-induced body size determination in Drosophila. We found that the miR-8 level is reduced in response to ecdysone, while the USH level is up-regulated reciprocally, and that miR-8 is transcriptionally repressed by ecdysone's early response genes. Furthermore, modulating the miR-8 level correlatively changes the fly body size; either overexpression or deletion of miR-8 abrogates ecdysone-induced growth control. Consistently, perturbation of USH impedes ecdysone's effect on body growth. Thus, miR-8 acts as a molecular rheostat that tunes organismal growth in response to a developmental maturation signal.


Assuntos
Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/genética , Regulação da Expressão Gênica no Desenvolvimento , MicroRNAs/genética , Transdução de Sinais , Animais , Linhagem Celular , Drosophila melanogaster/metabolismo , Ecdisona/metabolismo , Regulação para Cima
10.
Front Zool ; 15: 44, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30479644

RESUMO

The mechanism that determines the specific body size of an animal is a fundamental biological question that remains largely unanswered. This aspect is now beginning to be understood in insect models, particularly in Drosophila melanogaster, with studies highlighting the importance of nutrient-responsive growth signaling pathways involving insulin/insulin-like growth factor signaling (IIS) and target of rapamycin (TOR) (IIS/TOR). These pathways operate in animals, from insects to mammals, adjusting the growth rate in response to the nutritional condition of the organism. Organismal growth is closely coupled with the process of developmental maturation mediated by maturation steroid hormones, which is influenced greatly by environmental and nutritional conditions. Recent Drosophila studies have been revealing the mechanisms responsible for this phenomenon. In this review, I summarize some important findings about the steroid hormone regulation of Drosophila body growth, calling attention to the influence of developmental nutritional conditions on animal size determination.

11.
Int J Syst Evol Microbiol ; 68(1): 289-293, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29148359

RESUMO

A Gram-stain-negative and strictly aerobic, moderately halophilic bacterium, designated strain S1-47T, was isolated from estuary sediment in South Korea. Cells were non-motile rods showing oxidase- and catalase-positive activities. Growth was observed at 10-30 °C (optimum, 25 °C), at pH 5.0-8.0 (optimum, pH 6.0-7.0) and in the presence of 0-6.0 % (w/v) NaCl (optimum, 2.0 %). Strain S1-47T contained summed feature 3 (comprising C16 : 1ω7c and/or C16 : 1ω6c), summed feature 8 (comprising C18 : 1ω7c and/or C18 : 1ω6c) and C16 : 0 as major cellular fatty acids and ubiquinone-10 as the sole isoprenoid quinone. Phosphatidylethanolamine, an unidentified aminolipid, an unidentified phospholipid and three unidentified lipids were detected as polar lipids. The G+C content of the genomic DNA was 69.3 mol%. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain S1-47T formed a tight phylogenetic lineage with Albirhodobacter marinus N9T. Strain S1-47T was most closely related to Albirhodobactermarinus N9T with a 99.4 % 16S rRNA gene sequence similarity. DNA-DNA relatedness levels between strain S1-47T and the type strain of Albirhodobactermarinus were 49.8-52.2 %. Based on the phenotypic, chemotaxonomic and molecular features, strain S1-47T clearly represents a novel species of the genus Albirhodobacter, for which the name Albirhodobacter confluentis sp. nov. is proposed. The type strain is S1-47T (=KACC 18804T=JCM 31536T).


Assuntos
Estuários , Filogenia , Rhodobacteraceae/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , RNA Ribossômico 16S/genética , República da Coreia , Rhodobacteraceae/genética , Rhodobacteraceae/isolamento & purificação , Análise de Sequência de DNA , Ubiquinona/química
12.
Microb Ecol ; 74(1): 207-216, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28054304

RESUMO

Microbiota has a significant impact on the health of the host individual. The complexity of the interactions between mammalian hosts and their microbiota highlights the value of using Drosophila melanogaster as a model organism, because of its relatively simple microbial community and ease of physiological and genetic manipulation. However, highly variable and sometimes inconsistent results regarding the microbiota of D. melanogaster have been reported for host samples collected from different geographical locations; discrepancies that may be because of the inherent physiological conditions of the D. melanogaster host. Here, we conducted a comparative analysis of the gut microbiota of two D. melanogaster laboratory strains, w 1118 and Canton S, with respect to the sex and age of the host, by pyrosequencing of the 16S rRNA gene. In addition to the widespread and abundant commensal bacterial genera Lactobacillus and Acetobacter, we identified Enterococcus and Leuconostoc as major host-strain-specific bacterial genera. The relative proportions of these bacterial genera, and those of the species within each, were found to differ markedly with respect to strain, sex, and age of the host, even though host individuals were reared under the same nutritional conditions. By using various bioinformatic tools, we uncovered several characteristic features of microbiota corresponding to specific categories of the flies: host-sex-bias association of specific bacteria, age-dependent alteration of microbiota across host species and sex, and uniqueness of the microbiota of female w 1118 flies. Our results, thus, help to further our understanding of host-microbe interactions in the D. melanogaster model.


Assuntos
Drosophila melanogaster/microbiologia , Microbioma Gastrointestinal , Acetobacter , Fatores Etários , Animais , Feminino , Masculino , Microbiota , RNA Ribossômico 16S/genética , Fatores Sexuais
13.
Int J Mol Sci ; 18(5)2017 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-28445427

RESUMO

Transposable elements (TEs) are DNA elements that can change their position within the genome, with the potential to create mutations and destabilize the genome. As such, special molecular systems have been adopted in animals to control TE activity in order to protect the genome. PIWI proteins, in collaboration with PIWI-interacting RNAs (piRNAs), are well known to play a critical role in silencing germline TEs. Although initially thought to be germline-specific, the role of PIWI-piRNA pathways in controlling TEs in somatic cells has recently begun to be explored in various organisms, together with the role of endogenous small interfering RNAs (endo-siRNAs). This review summarizes recent results suggesting that these small RNA pathways have been critically implicated in the silencing of somatic TEs underlying various physiological traits, with a special focus on the Drosophila model organism.


Assuntos
Genoma , RNA não Traduzido/metabolismo , Animais , Elementos de DNA Transponíveis/genética , Drosophila/genética , Interferência de RNA , RNA Interferente Pequeno/antagonistas & inibidores , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , RNA não Traduzido/antagonistas & inibidores , RNA não Traduzido/genética
14.
Curr Microbiol ; 72(6): 716-22, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26888524

RESUMO

RNase E plays an important role in the degradation and processing of RNA in Escherichia coli. The enzymatic activity of RNase E is controlled by the protein inhibitors RraA and RraB. The marine pathogenic bacterium Vibrio vulnificus also contains homologs of RNase E and RraA, designated as RNase EV, RraAV1, and RraAV2. Here, we report that RraAV1 actively inhibits the enzymatic activity of RNase EV in vivo and in vitro by interacting with the C-terminal domain of RNase EV. Coexpression of RraAV1 reduced ribonucleolytic activity in the cells overproducing RNase EV and consequently restored normal growth of these cells. An in vitro cleavage assay further demonstrated that RraAV1 efficiently inhibits the ribonucleolytic activity of RNase EV on BR10 + hpT, a synthetic oligonucleotide containing the RNase E cleavage site of RNA I. Our findings suggest that RraAV1 plays an active role in RNase EV-mediated RNA cleavage in V. vulnificus.


Assuntos
Proteínas de Bactérias/metabolismo , Endorribonucleases/metabolismo , Escherichia coli/genética , Vibrio vulnificus/enzimologia , Proteínas de Bactérias/genética , Endorribonucleases/genética , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , Vibrio vulnificus/genética
15.
Nature ; 454(7205): 771-5, 2008 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-18594510

RESUMO

Homoiotherms, for example mammals, regulate their body temperature with physiological responses such as a change of metabolic rate and sweating. In contrast, the body temperature of poikilotherms, for example Drosophila, is the result of heat exchange with the surrounding environment as a result of the large ratio of surface area to volume of their bodies. Accordingly, these animals must instinctively move to places with an environmental temperature as close as possible to their genetically determined desired temperature. The temperature that Drosophila instinctively prefers has a function equivalent to the 'set point' temperature in mammals. Although various temperature-gated TRP channels have been discovered, molecular and cellular components in Drosophila brain responsible for determining the desired temperature remain unknown. We identified these components by performing a large-scale genetic screen of temperature preference behaviour (TPB) in Drosophila. In parallel, we mapped areas of the Drosophila brain controlling TPB by targeted inactivation of neurons with tetanus toxin and a potassium channel (Kir2.1) driven with various brain-specific GAL4s. Here we show that mushroom bodies (MBs) and the cyclic AMP-cAMP-dependent protein kinase A (cAMP-PKA) pathway are essential for controlling TPB. Furthermore, targeted expression of cAMP-PKA pathway components in only the MB was sufficient to rescue abnormal TPB of the corresponding mutants. Preferred temperatures were affected by the level of cAMP and PKA activity in the MBs in various PKA pathway mutants.


Assuntos
Regulação da Temperatura Corporal/fisiologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Drosophila melanogaster/fisiologia , Corpos Pedunculados/metabolismo , Transdução de Sinais , Temperatura , Animais , Temperatura Corporal/genética , Temperatura Corporal/fisiologia , Regulação da Temperatura Corporal/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Drosophila melanogaster/genética , Atividade Motora/genética , Atividade Motora/fisiologia , Corpos Pedunculados/enzimologia
16.
Cell Mol Life Sci ; 70(13): 2351-65, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23508807

RESUMO

How animals achieve their specific body size is a fundamental, but still largely unresolved, biological question. Over the past decades, studies on the insect model system have provided some important insights into the process of body size determination and highlighted the importance of insulin/insulin-like growth factor signaling. Fat body, the Drosophila counterpart of liver and adipose tissue, senses nutrient availability and controls larval growth rate by modulating peripheral insulin signaling. Similarly, insulin-like growth factor I produced from liver and muscle promotes postnatal body growth in mammals. Organismal growth is tightly coupled with the process of sexual maturation wherein the sex steroid hormone attenuates body growth. This review summarizes some important findings from Drosophila and mammalian studies that shed light on the general mechanism of animal size determination.


Assuntos
Tamanho Corporal , Drosophila/metabolismo , Insulina/fisiologia , Modelos Biológicos , Transdução de Sinais , Somatomedinas/fisiologia , Animais , Drosophila/anatomia & histologia , Drosophila/crescimento & desenvolvimento , Humanos , Insulina/metabolismo , Larva/crescimento & desenvolvimento , Larva/metabolismo , Mamíferos/anatomia & histologia , Mamíferos/crescimento & desenvolvimento , Mamíferos/metabolismo , Maturidade Sexual , Somatomedinas/metabolismo
17.
PLoS Genet ; 7(3): e1001346, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21455291

RESUMO

The ability to respond to environmental temperature variation is essential for survival in animals. Flies show robust temperature-preference behaviour (TPB) to find optimal temperatures. Recently, we have shown that Drosophila mushroom body (MB) functions as a center controlling TPB. However, neuromodulators that control the TPB in MB remain unknown. To identify the functions of dopamine in TPB, we have conducted various genetic studies in Drosophila. Inhibition of dopamine biosynthesis by genetic mutations or treatment with chemical inhibitors caused flies to prefer temperatures colder than normal. We also found that dopaminergic neurons are involved in TPB regulation, as the targeted inactivation of dopaminergic neurons by expression of a potassium channel (Kir2.1) induced flies with the loss of cold avoidance. Consistently, the mutant flies for dopamine receptor gene (DopR) also showed a cold temperature preference, which was rescued by MB-specific expression of DopR. Based on these results, we concluded that dopamine in MB is a key component in the homeostatic temperature control of Drosophila. The current findings will provide important bases to understand the logic of thermosensation and temperature preference decision in Drosophila.


Assuntos
Comportamento Animal/fisiologia , Temperatura Baixa , Dopamina/metabolismo , Drosophila/fisiologia , Transdução de Sinais , Animais , Regulação da Temperatura Corporal/genética , Encéfalo/metabolismo , Drosophila/genética , Drosophila/metabolismo , Regulação da Expressão Gênica/genética , Corpos Pedunculados/metabolismo , Mutação/genética , Neurônios/metabolismo , Receptores Dopaminérgicos/genética , Receptores Dopaminérgicos/metabolismo
18.
Nat Genet ; 37(3): 305-10, 2005 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-15731759

RESUMO

Several transient receptor potential channels were recently found to be activated by temperature stimuli in vitro. Their physiological and behavioral roles are largely unknown. From a temperature-preference behavior screen of 27,000 Drosophila melanogaster P-insertion mutants, we isolated a gene, named pyrexia (pyx), encoding a new transient receptor potential channel. Pyx was opened by temperatures above 40 degrees C in Xenopus laevis oocytes and HEK293T cells. It was ubiquitously expressed along the dendrites of a subset of peripheral nervous system neurons and was more permeable to K(+) than to Na(+). Although some pyx alleles resulted in abnormal temperature preferences, pyx null flies did not have significantly different temperature preferences than wild-type flies. But 60% of pyx null flies were paralyzed within 3 min of exposure to 40 degrees C, whereas only 9% of wild-type flies were paralyzed by the same stimulus. From these findings, we propose that the primary in vivo role of Pyx is to protect flies from high-temperature stress.


Assuntos
Proteínas de Ligação a Calmodulina/fisiologia , Proteínas de Drosophila/fisiologia , Drosophila melanogaster/fisiologia , Febre/fisiopatologia , Temperatura Alta , Proteínas de Membrana/fisiologia , Sequência de Aminoácidos , Animais , Proteínas de Ligação a Calmodulina/química , Linhagem Celular , Clonagem Molecular , DNA Complementar , Proteínas de Drosophila/química , Humanos , Imuno-Histoquímica , Proteínas de Membrana/química , Dados de Sequência Molecular , Homologia de Sequência de Aminoácidos , Canais de Potencial de Receptor Transitório , Xenopus laevis
19.
Anim Cells Syst (Seoul) ; 27(1): 329-339, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38023592

RESUMO

The gut microbiome plays a crucial role in maintaining health in a variety of organisms, from insects to humans. Further, beneficial symbiotic microbes are believed to contribute to improving the quality of life of the host. Drosophila is an optimal model for studying host-commensal microbe interactions because it allows for convenient manipulation of intestinal microbial composition. Fly microbiota has a simple taxonomic composition and can be cultivated and genetically tracked. This permits functional studies and analyses of the molecular mechanisms underlying their effects on host physiological processes. In this context, we briefly introduce the principle of juvenile developmental growth in Drosophila. Then, we discuss the current understanding of the molecular mechanisms underlying the effects of gut commensal bacteria, such as Lactiplantibacillus plantarum and Acetobacter pomorum, in the fly gut microbiome on Drosophila juvenile growth, including specific actions of gut hormones and metabolites in conserved cellular signaling systems, such as the insulin/insulin-like (IIS) and the target of rapamycin (TOR) pathways. Given the similarities in tissue function/structure, as well as the high conservation of physiological systems between Drosophila and mammals, findings from the Drosophila model system will have significant implications for understanding the mechanisms underlying the interaction between the host and the gut microbiome in metazoans.

20.
Mol Cells ; 46(10): 637-653, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37853687

RESUMO

The physiology of most organisms, including Drosophila, is heavily influenced by their interactions with certain types of commensal bacteria. Acetobacter and Lactobacillus, two of the most representative Drosophila commensal bacteria, have stimulatory effects on host larval development and growth. However, how these effects are related to host immune activity remains largely unknown. Here, we show that the Drosophila development-promoting effects of commensal bacteria are suppressed by host immune activity. Mono-association of germ-free Drosophila larvae with Acetobacter pomorum stimulated larval development, which was accelerated when host immune deficiency (IMD) pathway genes were mutated. This phenomenon was not observed in the case of mono-association with Lactobacillus plantarum. Moreover, the mutation of Toll pathway, which constitutes the other branch of the Drosophila immune pathway, did not accelerate A. pomorum-stimulated larval development. The mechanism of action of the IMD pathway-dependent effects of A. pomorum did not appear to involve previously known host mechanisms and bacterial metabolites such as gut peptidase expression, acetic acid, and thiamine, but appeared to involve larval serum proteins. These findings may shed light on the interaction between the beneficial effects of commensal bacteria and host immune activity.


Assuntos
Proteínas de Drosophila , Drosophila , Animais , Drosophila melanogaster/fisiologia , Ácido Acético/farmacologia , Bactérias , Tiamina , Larva
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA