Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 238
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Nature ; 623(7985): 157-166, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37853118

RESUMO

Immunotherapy failures can result from the highly suppressive tumour microenvironment that characterizes aggressive forms of cancer such as recurrent glioblastoma (rGBM)1,2. Here we report the results of a first-in-human phase I trial in 41 patients with rGBM who were injected with CAN-3110-an oncolytic herpes virus (oHSV)3. In contrast to other clinical oHSVs, CAN-3110 retains the viral neurovirulence ICP34.5 gene transcribed by a nestin promoter; nestin is overexpressed in GBM and other invasive tumours, but not in the adult brain or healthy differentiated tissue4. These modifications confer CAN-3110 with preferential tumour replication. No dose-limiting toxicities were encountered. Positive HSV1 serology was significantly associated with both improved survival and clearance of CAN-3110 from injected tumours. Survival after treatment, particularly in individuals seropositive for HSV1, was significantly associated with (1) changes in tumour/PBMC T cell counts and clonal diversity, (2) peripheral expansion/contraction of specific T cell clonotypes; and (3) tumour transcriptomic signatures of immune activation. These results provide human validation that intralesional oHSV treatment enhances anticancer immune responses even in immunosuppressive tumour microenvironments, particularly in individuals with cognate serology to the injected virus. This provides a biological rationale for use of this oncolytic modality in cancers that are otherwise unresponsive to immunotherapy (ClinicalTrials.gov: NCT03152318 ).


Assuntos
Neoplasias Encefálicas , Glioblastoma , Herpesvirus Humano 1 , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Glioblastoma/imunologia , Glioblastoma/patologia , Nestina/genética , Terapia Viral Oncolítica/efeitos adversos , Vírus Oncolíticos/genética , Vírus Oncolíticos/imunologia , Vírus Oncolíticos/fisiologia , Reprodutibilidade dos Testes , Análise de Sobrevida , Linfócitos T/citologia , Linfócitos T/imunologia , Resultado do Tratamento , Microambiente Tumoral/imunologia , Herpesvirus Humano 1/genética , Herpesvirus Humano 1/imunologia , Herpesvirus Humano 1/fisiologia
2.
Proc Natl Acad Sci U S A ; 120(6): e2214729120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36716359

RESUMO

Understanding the processes that enable organisms to shift into more arid environments as they emerge is critical for gauging resilience to climate change, yet these forces remain poorly known. In a comprehensive clade-based study, we investigate recent shifts into North American deserts in the rock daisies (tribe Perityleae), a diverse tribe of desert sunflowers (Compositae). We sample rock daisies across two separate contact zones between tropical deciduous forest and desert biomes in western North America and infer a time-calibrated phylogeny based on target capture sequence data. We infer biome shifts using Bayesian inference with paleobiome-informed models and find evidence for seven independent shifts into desert habitats since the onset of aridification in the late Miocene. The earliest shift occurred out of tropical deciduous forests and led to an extensive radiation throughout North American deserts that accounts for the majority of extant desert rock daisies. Estimates of life history and micro-habitat in the rock daisies reveal a correlation between a suffrutescent perennial life history and edaphic endemism onto rocky outcrops, an ecological specialization that evolved prior to establishment and diversification in deserts. That the insular radiation of desert rock daisies stemmed from ancestors preadapted for dry conditions as edaphic endemics in otherwise densely vegetated tropical deciduous forests in northwest Mexico underscores the crucial role of exaptation and dispersal for shifts into arid environments.


Assuntos
Asteraceae , Magnoliopsida , Teorema de Bayes , Clima Desértico , Filogenia , Ecossistema
3.
Development ; 149(24)2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36520654

RESUMO

Appropriate patterning of the retina during embryonic development is assumed to underlie the establishment of spatially localised specialisations that mediate the perception of specific visual features. For example, in zebrafish, an area involved in high acuity vision (HAA) is thought to be present in the ventro-temporal retina. Here, we show that the interplay of the transcription factor Rx3 with Fibroblast Growth Factor and Hedgehog signals initiates and restricts foxd1 expression to the prospective temporal retina, initiating naso-temporal regionalisation of the retina. Abrogation of Foxd1 results in the loss of temporal and expansion of nasal retinal character, and consequent absence of the HAA. These structural defects correlate with severe visual defects, as assessed in optokinetic and optomotor response assays. In contrast, optokinetic responses are unaffected in the opposite condition, in which nasal retinal character is lost at the expense of expanded temporal character. Our study indicates that the establishment of temporal retinal character during early retinal development is required for the specification of the HAA, and suggests a prominent role of the temporal retina in controlling specific visual functions.


Assuntos
Proteínas Hedgehog , Peixe-Zebra , Animais , Peixe-Zebra/genética , Proteínas Hedgehog/metabolismo , Estudos Prospectivos , Retina/metabolismo , Visão Ocular
4.
Ann Neurol ; 93(1): 109-119, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36254350

RESUMO

OBJECTIVE: Small vessel primary angiitis of the central nervous system is a rare and often severe disease characterized by central nervous system-restricted inflammatory vasculitis on histopathology. Diagnosis requires brain biopsy for confirmation and is suggested prior to starting immunotherapy when feasible. However, emerging evidence suggests that other neuroinflammatory conditions may have a clinical and radiographic phenotype that mimics small vessel primary angiitis, at times with overlapping pathologic features as well. Such diagnoses, including myelin oligodendrocyte glycoprotein antibody-associated disease and central nervous system-restricted hemophagocytic lymphohistiocytosis, can be non-invasively diagnosed with serum antibody or genetic testing that would prompt different monitoring and treatment paradigms. To determine the ultimate diagnosis of patients who were suspected prior to biopsy to have small vessel primary angiitis, we reviewed the clinical, radiographic, and pathological features of a cohort of patients at a single center undergoing brain biopsy for non-oncologic indications. METHODS: Clinical data were retrospectively extracted from the medical record. Pathology and neuroimaging review was conducted. RESULTS: We identified 21 patients over a 19-year time-period, of whom 14 (66.7%) were ultimately diagnosed with entities other than small vessel primary angiitis that would have obviated the need for brain biopsy. Diagnoses included anti-myelin oligodendrocyte glycoprotein antibody associated disease (n = 9), central nervous system-restricted hemophagocytic lymphohistiocytosis (n = 3), anti-GABAA receptor encephalitis (n = 1), and Aicardi-Goutières syndrome (n = 1). INTERPRETATION: This study highlights the importance of pursuing now readily available non-invasive testing for mimicking diagnoses before performing a brain biopsy for suspected small vessel primary angiitis of the central nervous system. ANN NEUROL 2023;93:109-119.


Assuntos
Linfo-Histiocitose Hemofagocítica , Vasculite do Sistema Nervoso Central , Humanos , Estudos Retrospectivos , Linfo-Histiocitose Hemofagocítica/complicações , Sistema Nervoso Central/patologia , Vasculite do Sistema Nervoso Central/diagnóstico por imagem , Glicoproteínas
5.
Biometrics ; 80(3)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-39109971

RESUMO

Concentrations of pathogen genomes measured in wastewater have recently become available as a new data source to use when modeling the spread of infectious diseases. One promising use for this data source is inference of the effective reproduction number, the average number of individuals a newly infected person will infect. We propose a model where new infections arrive according to a time-varying immigration rate which can be interpreted as an average number of secondary infections produced by one infectious individual per unit time. This model allows us to estimate the effective reproduction number from concentrations of pathogen genomes, while avoiding difficulty to verify assumptions about the dynamics of the susceptible population. As a byproduct of our primary goal, we also produce a new model for estimating the effective reproduction number from case data using the same framework. We test this modeling framework in an agent-based simulation study with a realistic data generating mechanism which accounts for the time-varying dynamics of pathogen shedding. Finally, we apply our new model to estimating the effective reproduction number of SARS-CoV-2, the causative agent of COVID-19, in Los Angeles, CA, using pathogen RNA concentrations collected from a large wastewater treatment facility.


Assuntos
Número Básico de Reprodução , COVID-19 , SARS-CoV-2 , Águas Residuárias , Humanos , COVID-19/transmissão , COVID-19/epidemiologia , Número Básico de Reprodução/estatística & dados numéricos , Simulação por Computador , Modelos Estatísticos , Los Angeles/epidemiologia
6.
Nat Methods ; 17(7): 741-748, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32483335

RESUMO

Two-photon microscopy is widely used to investigate brain function across multiple spatial scales. However, measurements of neural activity are compromised by brain movement in behaving animals. Brain motion-induced artifacts are typically corrected using post hoc processing of two-dimensional images, but this approach is slow and does not correct for axial movements. Moreover, the deleterious effects of brain movement on high-speed imaging of small regions of interest and photostimulation cannot be corrected post hoc. To address this problem, we combined random-access three-dimensional (3D) laser scanning using an acousto-optic lens and rapid closed-loop field programmable gate array processing to track 3D brain movement and correct motion artifacts in real time at up to 1 kHz. Our recordings from synapses, dendrites and large neuronal populations in behaving mice and zebrafish demonstrate real-time movement-corrected 3D two-photon imaging with submicrometer precision.


Assuntos
Imageamento Tridimensional/métodos , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Movimento , Peixe-Zebra
7.
Mod Pathol ; 36(5): 100168, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36990280

RESUMO

With the advent of increasing emerging infectious diseases, rising antibiotic resistance, and the growing number of immunocompromised patients, there is increasing demand for infectious disease (ID) pathology expertise and microbiology testing. Currently, ID pathology training and emerging molecular microbiology techniques (eg, metagenomic next-generation sequencing and whole genome sequencing) are not included in the most American Council of Graduate Medical Education medical microbiology fellowship curricula, and not surprisingly, many institutions lack anatomical pathologists with expertise in ID pathology and advanced molecular diagnostics. In this article, we describe the curriculum and structure of the Franz von Lichtenberg Fellowship in Infectious Disease and Molecular Microbiology at Brigham and Women's Hospital in Boston, MA. We emphasize the value of a training model that strives to integrate anatomical pathology, clinical pathology, and molecular pathology by providing examples in a case-based format and presenting selected metrics of the potential effect of such integrative ID pathology service and briefly describing opportunities and challenges of our global health efforts in Rwanda.


Assuntos
Doenças Transmissíveis , Patologia Clínica , Patologia , Humanos , Feminino , Estados Unidos , Currículo , Educação de Pós-Graduação em Medicina/métodos , África , Patologia/educação
8.
Phys Rev Lett ; 131(16): 166601, 2023 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-37925728

RESUMO

Entanglement entropies of two-dimensional gapped ground states are expected to satisfy an area law, with a constant correction term known as the topological entanglement entropy (TEE). In many models, the TEE takes a universal value that characterizes the underlying topological phase. However, the TEE is not truly universal: it can differ even for two states related by constant-depth circuits, which are necessarily in the same phase. The difference between the TEE and the value predicted by the anyon theory is often called the "spurious" topological entanglement entropy. We show that this spurious contribution is always non-negative, thus the value predicted by the anyon theory provides a universal lower bound. This observation also leads to a definition of TEE that is invariant under constant-depth quantum circuits.

9.
PLoS Comput Biol ; 18(12): e1010696, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36469509

RESUMO

Identifying host factors that influence infectious disease transmission is an important step toward developing interventions to reduce disease incidence. Recent advances in methods for reconstructing infectious disease transmission events using pathogen genomic and epidemiological data open the door for investigation of host factors that affect onward transmission. While most transmission reconstruction methods are designed to work with densely sampled outbreaks, these methods are making their way into surveillance studies, where the fraction of sampled cases with sequenced pathogens could be relatively low. Surveillance studies that use transmission event reconstruction then use the reconstructed events as response variables (i.e., infection source status of each sampled case) and use host characteristics as predictors (e.g., presence of HIV infection) in regression models. We use simulations to study estimation of the effect of a host factor on probability of being an infection source via this multi-step inferential procedure. Using TransPhylo-a widely-used method for Bayesian estimation of infectious disease transmission events-and logistic regression, we find that low sensitivity of identifying infection sources leads to dilution of the signal, biasing logistic regression coefficients toward zero. We show that increasing the proportion of sampled cases improves sensitivity and some, but not all properties of the logistic regression inference. Application of these approaches to real world data from a population-based TB study in Botswana fails to detect an association between HIV infection and probability of being a TB infection source. We conclude that application of a pipeline, where one first uses TransPhylo and sparsely sampled surveillance data to infer transmission events and then estimates effects of host characteristics on probabilities of these events, should be accompanied by a realistic simulation study to better understand biases stemming from imprecise transmission event inference.


Assuntos
Infecções por HIV , Tuberculose , Humanos , Teorema de Bayes , Infecções por HIV/epidemiologia , Tuberculose/epidemiologia , Tuberculose/genética , Surtos de Doenças , Simulação por Computador
10.
Semin Neurol ; 43(2): 195-204, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37023787

RESUMO

Neuropathological findings have been published from ∼900 patients who died with or from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infections, representing less than 0.01% of the close to 6.4 million deaths reported to the World Health Organization 2 years into the coronavirus disease 2019 (COVID-19) pandemic. In this review, we extend our prior work summarizing COVID-19 neuropathology by including information on published autopsies up to June 2022, and neuropathological studies in children, COVID-19 variants, secondary brain infections, ex vivo brain imaging, and autopsies performed in countries outside of the United States or Europe. We also summarize research studies that investigate mechanisms of neuropathogenesis in nonhuman primates and other models. While a pattern of cerebrovascular pathology and microglial-predominant inflammation remains the primary COVID-19-associated neuropathological finding, there is no singular understanding of the mechanisms that underlie neurological symptoms in acute COVID-19 or the post-acute COVID-19 condition. Thus, it is paramount that we incorporate microscopic and molecular findings from brain tissue into what we know about the clinical disease so that we attain best practice guidance and direct research priorities for the study of the neurological morbidity of COVID-19.


Assuntos
Neoplasias Encefálicas , COVID-19 , Animais , Humanos , COVID-19/patologia , SARS-CoV-2 , Autopsia , Encéfalo/patologia , Neoplasias Encefálicas/patologia
11.
Cell Mol Biol (Noisy-le-grand) ; 69(3): 52-63, 2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37300689

RESUMO

Dysmenorrhea is the combination of cramps and pain associated with the menstrual period, and the symptoms affect at least 30% of women worldwide. Tolerance to symptoms depends on each person's pain threshold; however, dysmenorrhea seriously affects daily activities and chronically reduces the quality of life. Some dysmenorrhea cases even require hospitalization due to unbearable symptoms of severe pain. Dysmenorrhea is an underestimated affectation and remains even in different first-world countries as a taboo subject, promoted by the establishment of an apparent policy of gender equality. A person with primary or secondary dysmenorrhea requires medical assistance in choosing the best treatment and an integral approach. This review intends to demonstrate the impact of dysmenorrhea on quality of life. We describe the pathophysiology of this disorder from a molecular point of view and perform a comprehensive compilation and analysis of the most critical findings in the therapeutic management of dysmenorrhea. Likewise, we propose an interdisciplinary approach to the phenomenon of dysmenorrhea at the cellular level in a concise way and the botanical, pharmacological, and medical applications for its management. Since dysmenorrhea symptoms can vary between individuals, medical treatment cannot be generalized and depends on each patient. Therefore, we hypothesized that a suitable strategy could result from the combination of pharmacological therapy aided by a non-pharmacological approach.


Assuntos
Dismenorreia , Qualidade de Vida , Feminino , Humanos , Dismenorreia/tratamento farmacológico , Medição da Dor
12.
J Neurosci ; 41(31): 6652-6672, 2021 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-34168008

RESUMO

A precise sequence of axon guidance events is required for the development of the ocular motor system. Three cranial nerves grow toward, and connect with, six extraocular muscles in a stereotyped pattern, to control eye movements. The signaling protein alpha2-chimaerin (α2-CHN) plays a pivotal role in the formation of the ocular motor system; mutations in CHN1, encoding α2-CHN, cause the human eye movement disorder Duane Retraction Syndrome (DRS). Our research has demonstrated that the manipulation of α2-chn signaling in the zebrafish embryo leads to ocular motor axon wiring defects, although the signaling cascades regulated by α2-chn remain poorly understood. Here, we demonstrate that several cytoskeletal regulatory proteins-collapsin response mediator protein 2 (CRMP2; encoded by the gene dpysl2), stathmin1, and stathmin 2-bind to α2-CHN. dpysl2, stathmin1, and especially stathmin2 are expressed by ocular motor neurons. We find that the manipulation of dpysl2 and of stathmins in zebrafish larvae leads to defects in both the axon wiring of the ocular motor system and the optokinetic reflex, impairing horizontal eye movements. Knockdowns of these molecules in zebrafish larvae of either sex caused axon guidance phenotypes that included defasciculation and ectopic branching; in some cases, these phenotypes were reminiscent of DRS. chn1 knock-down phenotypes were rescued by the overexpression of CRMP2 and STMN1, suggesting that these proteins act in the same signaling pathway. These findings suggest that CRMP2 and stathmins signal downstream of α2-CHN to orchestrate ocular motor axon guidance and to control eye movements.SIGNIFICANCE STATEMENT The precise control of eye movements is crucial for the life of vertebrate animals, including humans. In humans, this control depends on the arrangement of nerve wiring of the ocular motor system, composed of three nerves and six muscles, a system that is conserved across vertebrate phyla. Mutations in the protein alpha2-chimaerin have previously been shown to cause eye movement disorders (squint) and axon wiring defects in humans. Our recent work has unraveled how alpha2-chimaerin coordinates axon guidance of the ocular motor system in animal models. In this article, we demonstrate key roles for the proteins CRMP2 and stathmin 1/2 in the signaling pathway orchestrated by alpha2-chimaerin, potentially giving insight into the etiology of eye movement disorders in humans.


Assuntos
Orientação de Axônios/fisiologia , Quimerina 1/metabolismo , Neurônios Motores/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Músculos Oculomotores/inervação , Estatmina/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Animais , Quimerina 1/genética , Síndrome da Retração Ocular/genética , Movimentos Oculares , Transdução de Sinais/fisiologia , Peixe-Zebra
13.
Emerg Infect Dis ; 28(4): 856-859, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35318923

RESUMO

We report 2 cases of Rigidoporus corticola (Oxyporus corticola) infection in humans in the United States. Clinical manifestations consisted of angioinvasive fungal sinusitis in 1 patient and pulmonary intracavitary fungus ball in the other patient. These cases illustrate previously undescribed clinicopathologic manifestations of infection by this filamentous basidiomycete in humans.


Assuntos
Infecções Fúngicas Invasivas , Micoses , Polyporales , Humanos , Hospedeiro Imunocomprometido , Infecções Fúngicas Invasivas/diagnóstico , Micoses/microbiologia , Estados Unidos/epidemiologia
14.
Mod Pathol ; 35(9): 1175-1180, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35361888

RESUMO

Current public health initiatives to contain the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) global pandemic focus on expanding vaccination efforts to include vulnerable populations such as pregnant people. Vaccines using messenger ribonucleic acid (mRNA) technology rely on translation by immune cells, primarily at the injection site. Hesitancy remains among the general population regarding the safety of mRNA vaccines during gestation, and it remains unknown whether the SARS-CoV-2 Spike protein (the product of mRNA vaccines available) accumulates in the placenta after vaccination. Objective: To determine whether Spike protein translation and accumulation occurs in placental tissue in the context of recent mRNA SARC-CoV-2 vaccination during pregnancy. We identified 48 patients receiving one or two doses of mRNA SARS-CoV-2 vaccine during gestation and used immunohistochemistry against SARS-CoV-2 Spike protein in formalin-fixed, paraffin-embedded placental tissue. One placenta, positive for SARS-CoV-2 RNA by in situ hybridization (ISH) was used as positive control. Seven term placentas collected prior to the emergence of SARS-CoV-2 served as negative controls. Eighty one percent of patients in the study group underwent third-trimester delivery; remaining had a first-trimester spontaneous abortion or elective second-trimester termination. Patients received two (52%) or one (48%) vaccine doses during pregnancy, with a median interval between latest dose and delivery of 13 days (range 2-79 days). Most (63%) cases had their latest dose within 15 days prior to delivery. All the placentas in the study and negative control groups were negative for SARS-CoV-2 immunohistochemistry. Six study cases with short vaccine-delivery intervals (2-7 days) were subjected to SARS-CoV-2 ISH and were negative. Our findings suggest that mRNA vaccines do not reach significant concentrations in the placenta given the absence of definitive SARS-CoV-2 Spike protein accumulation in placental tissue. This observation provides evidence supporting the safety of mRNA vaccines to the placental-fetal unit.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Placenta , Complicações Infecciosas na Gravidez , Glicoproteína da Espícula de Coronavírus , COVID-19/prevenção & controle , Vacinas contra COVID-19/administração & dosagem , Feminino , Humanos , Placenta/virologia , Gravidez , Complicações Infecciosas na Gravidez/prevenção & controle , Complicações Infecciosas na Gravidez/virologia , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/análise , Vacinação
15.
Phys Rev Lett ; 129(26): 260402, 2022 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-36608201

RESUMO

The modular commutator is a recently discovered entanglement quantity that quantifies the chirality of the underlying many-body quantum state. In this Letter, we derive a universal expression for the modular commutator in conformal field theories in 1+1 dimensions and discuss its salient features. We show that the modular commutator depends only on the chiral central charge and the conformal cross ratio. We test this formula for a gapped (2+1)-dimensional system with a chiral edge, i.e., the quantum Hall state, and observe excellent agreement with numerical simulations. Furthermore, we propose a geometric dual for the modular commutator in certain preferred states of the AdS/CFT correspondence. For these states, we argue that the modular commutator can be obtained from a set of crossing angles between intersecting Ryu-Takayanagi surfaces.

16.
Phys Rev Lett ; 128(17): 176402, 2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35570463

RESUMO

A (2+1)-dimensional gapped quantum many-body system can have a topologically protected energy current at its edge. The magnitude of this current is determined entirely by the temperature and the chiral central charge, a quantity associated with the effective field theory of the edge. We derive a formula for the chiral central charge that, akin to the topological entanglement entropy, is completely determined by the many-body ground state wave function in the bulk. According to our formula, nonzero chiral central charge gives rise to a topological obstruction that prevents the ground state wave function from being real valued in any local product basis.

17.
J Neuroophthalmol ; 42(2): 163-172, 2022 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-35195546

RESUMO

BACKGROUND: The literature on neurological manifestations, cerebrospinal fluid analyses, and autopsies in patients with COVID-19 continues to grow. The proposed mechanisms for neurological disease in patients with COVID-19 include indirect processes such as inflammation, microvascular injury, and hypoxic-ischemic damage. An alternate hypothesis suggests direct viral entry of SARS-CoV-2 into the brain and cerebrospinal fluid, given varying reports regarding isolation of viral components from these anatomical sites. EVIDENCE ACQUISITION: PubMed, Google Scholar databases, and neuroanatomical textbooks were manually searched and reviewed. RESULTS: We provide clinical concepts regarding the mechanisms of viral pathogen invasion in the central nervous system (CNS); advances in our mechanistic understanding of CNS invasion in well-known neurotropic pathogens can aid in understanding how viruses evolve strategies to enter brain parenchyma. We also present the structural components of CNS compartments that influence viral entry, focusing on hematogenous and transneuronal spread, and discuss this evidence as it relates to our understanding of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). CONCLUSIONS: Although there is a paucity of data supporting direct viral entry of SARS-CoV-2 in humans, increasing our knowledge of the structural components of CNS compartments that block viral entry and pathways exploited by pathogens is fundamental to preparing clinicians and researchers for what to expect when a novel emerging virus with neurological symptoms establishes infection in the CNS, and how to design therapeutics to mitigate such an infection.


Assuntos
COVID-19 , Doenças do Sistema Nervoso , Encéfalo , Sistema Nervoso Central , Humanos , SARS-CoV-2
18.
ORL J Otorhinolaryngol Relat Spec ; 84(5): 361-369, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35114675

RESUMO

BACKGROUND: Although meningiomas are the most common central nervous system neoplasms, extracranial metastases are exceedingly rare. There are even fewer reports of metastatic meningiomas to the neck. METHODS: We described a patient with multiply recurrent orbital meningioma with metastasis to the neck found incidentally during neck exploration for composite resection and free tissue reconstruction. We performed a systematic review for all records pertaining to metastatic meningiomas to the cervical regions. RESULTS: We found 9 previous reports of cervical metastatic meningiomas. Almost all cases underwent extensive local resection. There was no evidence of an association between the histological grade of the tumor and risk of metastasis to the neck. Cervical lymph node dissemination is more common in patients presenting after previous primary tumor resection. CONCLUSIONS: In the context of a neck mass, our findings suggest that metastatic meningioma should be included in the differential diagnosis, especially in patients with previous resections.


Assuntos
Neoplasias Meníngeas , Meningioma , Segunda Neoplasia Primária , Humanos , Linfonodos/patologia , Neoplasias Meníngeas/patologia , Neoplasias Meníngeas/cirurgia , Meningioma/diagnóstico , Meningioma/patologia , Meningioma/cirurgia , Pescoço/patologia , Recidiva Local de Neoplasia/patologia
19.
Emerg Infect Dis ; 27(1)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33261720

RESUMO

A 56-year-old man receiving rituximab who had months of neurologic symptoms was found to have Jamestown Canyon virus in cerebrospinal fluid by clinical metagenomic sequencing. The patient died, and postmortem examination revealed extensive neuropathologic abnormalities. Deep sequencing enabled detailed characterization of viral genomes from the cerebrospinal fluid, cerebellum, and cerebral cortex.


Assuntos
Vírus da Encefalite da Califórnia , Encefalite da Califórnia , Anticorpos Antivirais , Humanos , Masculino , Metagenoma , Metagenômica , Pessoa de Meia-Idade , Rituximab
20.
Phys Rev Lett ; 126(14): 141602, 2021 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-33891433

RESUMO

We study the ground-state entanglement of gapped domain walls between topologically ordered systems in two spatial dimensions. We derive a universal correction to the ground-state entanglement entropy, which is equal to the logarithm of the total quantum dimension of a set of superselection sectors localized on the domain wall. This expression is derived from the recently proposed entanglement bootstrap method.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA